[1]
K. Hashi, K. Ishikawa, T. Matsuda, K. Aoki, Microstructure and hydrogen permeability in Nb–Ti–Co multiphase alloys. J. Alloys Compd. 425 (2006) 284-290.
DOI: 10.1016/j.jallcom.2006.01.028
Google Scholar
[2]
W. Luo, K. Ishikawa K. Aoki. High hydrogen permeability in the Nb-rich Nb–Ti–Ni alloy. J. Alloys Compd. 407 (2006) 115-117.
DOI: 10.1016/j.jallcom.2005.06.043
Google Scholar
[3]
V.M. Golovkov, V.G. Mironchik, V.V. Sohoreva, V.L. Popov. Track membrane: features of the production, modification of membrane properties and template metal structures. Russian Physics Journal. 10/3 (2007) 275-280 (in Russian).
Google Scholar
[4]
V.M. Finkel, Physical Principles of Fracture Retardation, Metallurgiya, Moscow, 1977 (in Russian).
Google Scholar
[5]
A.I. Ryabchikov, I.A. Ryabchikov, I. B Stepanov, Development of filtered DC metal plasma ion implantation and coating deposition methods based on high-frequency short-pulsed bias voltage application, Vacuum. 78 (2-4) (2005) 331-336.
DOI: 10.1016/j.vacuum.2005.01.046
Google Scholar
[6]
I.A. Kurzina, E.V. Kozlov, Yu.P. Sharkeev, A.I. Ryabchikov, I.B. Stepanov, I.A. Bozhko, M.P. Kalashnikov, D.O. Sivin, S.V. Fortuna, Influence of ion implantation on nanoscale intermetallic-phase formation in Ti–Al, Ni–Al and Ni–Ti systems. Surf. Coat. Tech. 201 (2007).
DOI: 10.1016/j.surfcoat.2006.02.062
Google Scholar
[7]
A.I. Ryabchikov, High current vacuum-arc ion source for ion implantation and coating deposition technologies. Rev. Sci. Instrum. 63 (4) (1992) 2425-2427.
Google Scholar
[8]
A.I. Ryabchikov, R.A. Nasyrov, Sources and methods of repetitively pulsed ion/plasma material treatment. Rev. Sci. Instrum. 63 (4) (1992) 2428-2430.
DOI: 10.1063/1.1142900
Google Scholar