[1]
R. Seshadri, Oxide nanoparticles, in: C.N.R. Rao, A. Muller, A.K. Cheetham (Eds. ), The chemistry of nanomaterials: synthesis, properties and applications, Wiley, Weinheim, 2005, 94-112.
Google Scholar
[2]
L.M. Velichkina, A.N. Pestryakov, A.V. Vosmerikov, I.V. Tuzovskaya, N.E. Bogdanchikova, M. Avalos, M. Farias, H. Tiznado, Catalytic activity in the hydrocarbon conversion of systems containing platinum, nickel, iron, and zinc nanoparticles (communication 2), Petrol. Chem. 48, 5 (2007).
DOI: 10.1134/s0965544108050046
Google Scholar
[3]
I.A. Toutorski, T.E. Tkachenko, B.V. Pokidko, N.I. Maliavski, V.I. Sidorov, Mechanical Properties and Structure of Zinc-Containing Latex-Silicate Composites, J. Sol-Gel Sci. Technol. 26, 1-3 (2003) 505-509.
DOI: 10.1023/a:1020747315536
Google Scholar
[4]
M. Bai, P.C. Lo, J. Ye, C. Wu, W.P. Fong, D.K. Ng, Facile synthesis of pegylated Zinc(II) phthalocyanines via transesterification and their in vitro photodynamic activities, Org. Biomol. Chem. 9, 20 (2011) 7028-7032.
DOI: 10.1039/c1ob05955f
Google Scholar
[5]
G. Oberdörster, E. Oberdörster, J. Oberdörster, Nanotoxicology: An Emerging Discipline Involving from Studies of Ultrafine Particles, Environ. Health Perspect. 113, 7 (2005) 823-839.
DOI: 10.1289/ehp.7339
Google Scholar
[6]
L.K. Adams, D.Y. Lyon, A. McIntosh, P.J.J. Alvarez, Comparative toxicity of nano scale TiO2, SiO2 and ZnO water suspensions, Water Sci. Technol. 54 (2006) 327-334.
DOI: 10.2166/wst.2006.891
Google Scholar
[7]
M. Kumari, S.S. Khan, S. Pakrashi, A. Mukherjee, N. Chandrasekaran, Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa, J. Hazard. Mater. 190, 1-3 (2011) 613-621.
DOI: 10.1016/j.jhazmat.2011.03.095
Google Scholar
[8]
W.S. Beckett, D.F. Chalupa, A. Pauly-Brown, D.M. Speers, J.C. Stewart, M.W. Frampton, M.J. Utell, L.S. Huang, C. Cox, W. Zareba, G. Oberdörster, Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: A human inhalation study, Am. J. Respir. Crit. Care Med. 171 (2005).
DOI: 10.1164/rccm.200406-837oc
Google Scholar
[9]
S. Hackenberg, A. Scherzed, A. Technau, M. Kessler, K. Froelich, C. Ginzkey, C. Koehler, M. Burghartz, R. Hagen, N. Kleinsasser, Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro, Toxicol. In Vitro. 25, 3 (2011).
DOI: 10.1016/j.tiv.2011.01.003
Google Scholar
[10]
A. Gojova, B. Guo, R.S. Kota, J.C. Rutledge, I.M. Kennedy, A.I. Barakat, Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition, Environ. Health Perspect. 115, 3 (2007) 403-409.
DOI: 10.1289/ehp.8497
Google Scholar
[11]
B. Wang, Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice, Toxicol. Lett. 161, 2 (2006) 115-123.
Google Scholar
[12]
L. Taccola, V. Raffa, C. Riggio, O. Vittorio, M.C. Iorio, R. Vanacore, A. Pietrabissa, A. Cuschieri, Zinc oxide nanoparticles as selective killers of proliferating cells, Int. J. Nanomedicine. 6 (2011) 1129-1140.
DOI: 10.2147/ijn.s16581
Google Scholar
[13]
V. Sharma, D. Anderson, A. Dhawan, Zinc oxide nanoparticles induce oxidative stress and genotoxicity in human liver cells (HepG2), J. Biomed. Nanotechnol. 7, 1 (2011) 98-99.
DOI: 10.1166/jbn.2011.1220
Google Scholar
[14]
J.H. Yuan, Y. Chen, H.X. Zha, L.J. Song, C.Y. Li, J.Q. Li, X.H. Xia, Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles, Colloids Surf., B. 76, 1 (2010) 145-150.
DOI: 10.1016/j.colsurfb.2009.10.028
Google Scholar
[15]
N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd, P.S. Casey, Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility, Environ. Sci. Technol. 41 (2007).
DOI: 10.1021/es071445r
Google Scholar
[16]
W.S. Cho, R. Duffin, C.A. Poland, A. Duschl, G.J. Oostingh, W. Macnee, M. Bradley, I.L. Megson, K. Donaldson, Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs, Nanotoxicology. 6 (2011).
DOI: 10.3109/17435390.2011.552810
Google Scholar
[17]
S. Manzo, A. Rocco, R. Carotenuto, F. Picione, M. Miglietta, G. Rametta, G. Francia, Investigation of ZnO nanoparticles' ecotoxicological effects towards different soil organisms, Environ. Sci. Pollut. Res. 18, 5 (2010) 756-763.
DOI: 10.1007/s11356-010-0421-0
Google Scholar
[18]
R.D. Handy, F. von der Kammer, J.R. Lead, M. Hassellov, R. Owen, M. Crane, The ecotoxicology and chemistry of manufactured nanoparticles, Ecotoxicology. 17 (2008) 287-314.
DOI: 10.1007/s10646-008-0199-8
Google Scholar
[19]
A. Yu. Godymchuk, G.G. Savel`ev, D.V. Gorbatenko, Dissolution of Copper Nanopowders in Inorganic Biological Media, Russ. J. Gen. Chem. 80, 5 (2010) 881-888.
DOI: 10.1134/s1070363210050026
Google Scholar
[20]
E.M. Egorova, Biochemical synthesis of gold and zinc nanoparticles in reverse micelles, Russ. J. Phys. Chem. A. 84, 4 (2010) 629-635.
DOI: 10.1134/s0036024410040199
Google Scholar
[21]
S. C . Singh, R. Gopal, Zinc nanoparticles in solution by laser ablation technique, Bull. Mater. Sci. 30, 3 (2007) 291-293.
DOI: 10.1007/s12034-007-0048-z
Google Scholar
[22]
A.A. Revina, E.V. Oksentyuk, A.A. Fenin, Synthesis and properties of zinc nanoparticles: The role and prospects of radiation chemistry in the development of modern nanotechnology, Prot. Met. 43, 6 (2007) 554-569.
DOI: 10.1134/s0033173207060069
Google Scholar
[23]
M.S. Chandrasekar, Srinivasan Shanmugasigamani, Pushpavanam Malathy, Structural and textural study of electrodeposited zinc from alkaline non-cyanide electrolyte, J. Mater. Sci. 45, 5 (2010) 1160-1169.
DOI: 10.1007/s10853-009-4045-z
Google Scholar
[24]
S.W.Y. Wong, P.T.Y. Leung, A.B. Djurisic, K.M.Y. Leung, Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility, Anal. Bioanal. Chem. 396, 2 (2010) 609-618.
DOI: 10.1007/s00216-009-3249-z
Google Scholar
[25]
X. Zhu, L. Zhu, Y. Chen, S. Tian, Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna, J. Nanopart. Res. 11 (2008) 67-75.
DOI: 10.1007/s11051-008-9426-8
Google Scholar
[26]
R. Tantra, S. Jing, S. Pichaimuthu, N. Walker, J. Noble, V. Hackley, Dispersion stability of nanoparticles in ecotoxicological investigations: the need for adequate measurement tools, J. Nanopart. Res. 13, 9 (2011) 3765-3780.
DOI: 10.1007/s11051-011-0298-y
Google Scholar
[27]
M. Farre, K. Gajda-Schrantz, L. Kantiani, D. Barcelo, Ecotoxicity and analysis of nanomaterials in the aquatic environment, Anal. Bioanal. Chem. 393 (2009) 81-95.
DOI: 10.1007/s00216-008-2458-1
Google Scholar
[28]
A.P. Astankova, A. Yu. Godymchuk, A.A. Gromov, A.P. Il'in, About kinetics of self-heating in reaction of Aluminum nanopowder with fluidal water, J. Phys. Chem. 82, 11 (2008) 2126-2134.
DOI: 10.1134/s0036024408110204
Google Scholar
[29]
A. Korshunov, M. Heyrovsky, S. Bakarjieva, L. Brabec, Electrolytic processes in various degree of dispersions, Langmuir. 23, 3 (2007) 1523-1529.
Google Scholar