Characterization of Electroexplosive Zinc Nanopowders in Aqueous Suspensions

Article Preview

Abstract:

Zn and ZnO nanosized powders are increasingly in demand of materials engineering, power systems and biotechnology. Meanwhile, elaboration, production and application of nanopowders have created the conditions for nanoparticles release into the environment. The lack of physicochemical information about nanoparticles behaviour in liquid environment does not allow to give deep interpretation of toxic effects of nanoparticles and elaborate new techniques for testing of nanomaterials. This study is primarily focused on the characterization of nanopowder composition, shape and dispersity of electroexplosive zinc nanopowder in aqueous suspensions based on simple physiological solutions of phosphate buffering saline, glucose solution, and distilled water. With the help of SEM images, X-ray analysis, and visualization it was revealed that on the surface of sphere-like Zn nanoparticles formed insoluble oxide-hydroxide compounds with strongly developed structure. The method of laser diffraction was used to give a description of the aggregation status of nanoparticles and its evolution on the time-scale.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-62

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Seshadri, Oxide nanoparticles, in: C.N.R. Rao, A. Muller, A.K. Cheetham (Eds. ), The chemistry of nanomaterials: synthesis, properties and applications, Wiley, Weinheim, 2005, 94-112.

Google Scholar

[2] L.M. Velichkina, A.N. Pestryakov, A.V. Vosmerikov, I.V. Tuzovskaya, N.E. Bogdanchikova, M. Avalos, M. Farias, H. Tiznado, Catalytic activity in the hydrocarbon conversion of systems containing platinum, nickel, iron, and zinc nanoparticles (communication 2), Petrol. Chem. 48, 5 (2007).

DOI: 10.1134/s0965544108050046

Google Scholar

[3] I.A. Toutorski, T.E. Tkachenko, B.V. Pokidko, N.I. Maliavski, V.I. Sidorov, Mechanical Properties and Structure of Zinc-Containing Latex-Silicate Composites, J. Sol-Gel Sci. Technol. 26, 1-3 (2003) 505-509.

DOI: 10.1023/a:1020747315536

Google Scholar

[4] M. Bai, P.C. Lo, J. Ye, C. Wu, W.P. Fong, D.K. Ng, Facile synthesis of pegylated Zinc(II) phthalocyanines via transesterification and their in vitro photodynamic activities, Org. Biomol. Chem. 9, 20 (2011) 7028-7032.

DOI: 10.1039/c1ob05955f

Google Scholar

[5] G. Oberdörster, E. Oberdörster, J. Oberdörster, Nanotoxicology: An Emerging Discipline Involving from Studies of Ultrafine Particles, Environ. Health Perspect. 113, 7 (2005) 823-839.

DOI: 10.1289/ehp.7339

Google Scholar

[6] L.K. Adams, D.Y. Lyon, A. McIntosh, P.J.J. Alvarez, Comparative toxicity of nano scale TiO2, SiO2 and ZnO water suspensions, Water Sci. Technol. 54 (2006) 327-334.

DOI: 10.2166/wst.2006.891

Google Scholar

[7] M. Kumari, S.S. Khan, S. Pakrashi, A. Mukherjee, N. Chandrasekaran, Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa, J. Hazard. Mater. 190, 1-3 (2011) 613-621.

DOI: 10.1016/j.jhazmat.2011.03.095

Google Scholar

[8] W.S. Beckett, D.F. Chalupa, A. Pauly-Brown, D.M. Speers, J.C. Stewart, M.W. Frampton, M.J. Utell, L.S. Huang, C. Cox, W. Zareba, G. Oberdörster, Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: A human inhalation study, Am. J. Respir. Crit. Care Med. 171 (2005).

DOI: 10.1164/rccm.200406-837oc

Google Scholar

[9] S. Hackenberg, A. Scherzed, A. Technau, M. Kessler, K. Froelich, C. Ginzkey, C. Koehler, M. Burghartz, R. Hagen, N. Kleinsasser, Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro, Toxicol. In Vitro. 25, 3 (2011).

DOI: 10.1016/j.tiv.2011.01.003

Google Scholar

[10] A. Gojova, B. Guo, R.S. Kota, J.C. Rutledge, I.M. Kennedy, A.I. Barakat, Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition, Environ. Health Perspect. 115, 3 (2007) 403-409.

DOI: 10.1289/ehp.8497

Google Scholar

[11] B. Wang, Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice, Toxicol. Lett. 161, 2 (2006) 115-123.

Google Scholar

[12] L. Taccola, V. Raffa, C. Riggio, O. Vittorio, M.C. Iorio, R. Vanacore, A. Pietrabissa, A. Cuschieri, Zinc oxide nanoparticles as selective killers of proliferating cells, Int. J. Nanomedicine. 6 (2011) 1129-1140.

DOI: 10.2147/ijn.s16581

Google Scholar

[13] V. Sharma, D. Anderson, A. Dhawan, Zinc oxide nanoparticles induce oxidative stress and genotoxicity in human liver cells (HepG2), J. Biomed. Nanotechnol. 7, 1 (2011) 98-99.

DOI: 10.1166/jbn.2011.1220

Google Scholar

[14] J.H. Yuan, Y. Chen, H.X. Zha, L.J. Song, C.Y. Li, J.Q. Li, X.H. Xia, Determination, characterization and cytotoxicity on HELF cells of ZnO nanoparticles, Colloids Surf., B. 76, 1 (2010) 145-150.

DOI: 10.1016/j.colsurfb.2009.10.028

Google Scholar

[15] N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd, P.S. Casey, Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility, Environ. Sci. Technol. 41 (2007).

DOI: 10.1021/es071445r

Google Scholar

[16] W.S. Cho, R. Duffin, C.A. Poland, A. Duschl, G.J. Oostingh, W. Macnee, M. Bradley, I.L. Megson, K. Donaldson, Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs, Nanotoxicology. 6 (2011).

DOI: 10.3109/17435390.2011.552810

Google Scholar

[17] S. Manzo, A. Rocco, R. Carotenuto, F. Picione, M. Miglietta, G. Rametta, G. Francia, Investigation of ZnO nanoparticles' ecotoxicological effects towards different soil organisms, Environ. Sci. Pollut. Res. 18, 5 (2010) 756-763.

DOI: 10.1007/s11356-010-0421-0

Google Scholar

[18] R.D. Handy, F. von der Kammer, J.R. Lead, M. Hassellov, R. Owen, M. Crane, The ecotoxicology and chemistry of manufactured nanoparticles, Ecotoxicology. 17 (2008) 287-314.

DOI: 10.1007/s10646-008-0199-8

Google Scholar

[19] A. Yu. Godymchuk, G.G. Savel`ev, D.V. Gorbatenko, Dissolution of Copper Nanopowders in Inorganic Biological Media, Russ. J. Gen. Chem. 80, 5 (2010) 881-888.

DOI: 10.1134/s1070363210050026

Google Scholar

[20] E.M. Egorova, Biochemical synthesis of gold and zinc nanoparticles in reverse micelles, Russ. J. Phys. Chem. A. 84, 4 (2010) 629-635.

DOI: 10.1134/s0036024410040199

Google Scholar

[21] S. C . Singh, R. Gopal, Zinc nanoparticles in solution by laser ablation technique, Bull. Mater. Sci. 30, 3 (2007) 291-293.

DOI: 10.1007/s12034-007-0048-z

Google Scholar

[22] A.A. Revina, E.V. Oksentyuk, A.A. Fenin, Synthesis and properties of zinc nanoparticles: The role and prospects of radiation chemistry in the development of modern nanotechnology, Prot. Met. 43, 6 (2007) 554-569.

DOI: 10.1134/s0033173207060069

Google Scholar

[23] M.S. Chandrasekar, Srinivasan Shanmugasigamani, Pushpavanam Malathy, Structural and textural study of electrodeposited zinc from alkaline non-cyanide electrolyte, J. Mater. Sci. 45, 5 (2010) 1160-1169.

DOI: 10.1007/s10853-009-4045-z

Google Scholar

[24] S.W.Y. Wong, P.T.Y. Leung, A.B. Djurisic, K.M.Y. Leung, Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility, Anal. Bioanal. Chem. 396, 2 (2010) 609-618.

DOI: 10.1007/s00216-009-3249-z

Google Scholar

[25] X. Zhu, L. Zhu, Y. Chen, S. Tian, Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna, J. Nanopart. Res. 11 (2008) 67-75.

DOI: 10.1007/s11051-008-9426-8

Google Scholar

[26] R. Tantra, S. Jing, S. Pichaimuthu, N. Walker, J. Noble, V. Hackley, Dispersion stability of nanoparticles in ecotoxicological investigations: the need for adequate measurement tools, J. Nanopart. Res. 13, 9 (2011) 3765-3780.

DOI: 10.1007/s11051-011-0298-y

Google Scholar

[27] M. Farre, K. Gajda-Schrantz, L. Kantiani, D. Barcelo, Ecotoxicity and analysis of nanomaterials in the aquatic environment, Anal. Bioanal. Chem. 393 (2009) 81-95.

DOI: 10.1007/s00216-008-2458-1

Google Scholar

[28] A.P. Astankova, A. Yu. Godymchuk, A.A. Gromov, A.P. Il'in, About kinetics of self-heating in reaction of Aluminum nanopowder with fluidal water, J. Phys. Chem. 82, 11 (2008) 2126-2134.

DOI: 10.1134/s0036024408110204

Google Scholar

[29] A. Korshunov, M. Heyrovsky, S. Bakarjieva, L. Brabec, Electrolytic processes in various degree of dispersions, Langmuir. 23, 3 (2007) 1523-1529.

Google Scholar