Development of Stainless Steel (SS316L) Foam with Different Composition Using Compaction Method

Article Preview

Abstract:

Powder metallurgy stainless steels are retains unique benefits in preparation of porous metals due to its low cost, better wear, precise size control and corrosion resistance which are significant quality displays. In this study, the fabrication of open cellular stainless steel (SS316L) foams by using a crystalline sugar via compaction method was investigated. In this work, we show a promising method of SS316L preparation with crystalline sugar as space holder particles. Then, the foams will be given to consider the properties of SS316L foam after sintering process. Powder metallurgy process needs to go through the mixing, pressing, sintering and analysis. The selected composition of SS316L was 50 wt % and 55 wt % SS316L while the remaining percentages are foaming agent or binder. Then, sintering process was conducted in the tube furnace. The SS316L foams were characterised using X-Ray Diffraction (XRD) and Energy Diffraction X-ray (EDX). The results of this study indicate that, the XRD was detected Austenite stainless steel. Then, the detected elements in the SS316L foam were O, K, Mn, Cr, Fe, Mo and Al.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-90

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, N. H. G. Wadley, Metal foams: A design guide. USA: Butterworth-Heinemann; (2000).

DOI: 10.1016/b978-075067219-1/50001-5

Google Scholar

[2] Banhart J. Manufacture, Characterization and applications of cellular metals and metal foams. Prog Mater. Sci., 46:559–632 (2001).

Google Scholar

[3] Surace R., De Filippis L. A. C, Ludovic A. D., Boghetich G., Influence of Processing parameters on Aluminum foam produced by Space Holder technique. Mater. Des, 30: 1878–85 (2009).

DOI: 10.1016/j.matdes.2008.09.027

Google Scholar

[4] S. Ahmad, N. Muhamad, A. Muchtar, J. Sahari , M. H. I. Ibrahim, K. R. Jamaludin and N. H. M. Nor, Development and characterization of titanium alloy foams, International Journal of Mechanical and Materials Engineering (IJMME), Vol. 5, No.2, 244-250 (2010).

DOI: 10.4028/www.scientific.net/kem.447-448.671

Google Scholar

[5] Gibson L. J., Ashby M. F., Cellular solids – structures and properties. Cambridge: Cambridge University Press; (1997).

Google Scholar

[6] L. J. Gibson, Mechanical behavior of metallic foamsAnnu. Rev. Mater. Sci.30, 191–227 (2000).

Google Scholar

[7] J. Banhart, Light-metal foams, History of innovation and technological challenges, Adv. Eng. Mater.15, 82–111 (2013).

DOI: 10.1002/adem.201200217

Google Scholar

[8] N. Jha, D. P. Mondal, J. D. Majumdar, A. Badkul, A.K. Jha, and A.K. Khare, Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route. Materials and Design 47:810-819 (2013).

DOI: 10.1016/j.matdes.2013.01.005

Google Scholar

[9] Y. Hangai, K. Zushida , H. Fujii , R. Ueji , O. Kuwazuru and N. Yoshikawa; Friction Powder Compaction Process for fabricating open-celled Cu foam by sintering-dissolution process route Using NaCl spaceholder, Materials Science & Engineering A585 (2013); 468–474.

DOI: 10.1016/j.msea.2013.08.004

Google Scholar

[10] Jiang B, Zhao N.Q., Shi C. S., Du X. W., Li J. J., Man H. C., A novel ... of the metal injection molding process with the space-holder technique, Mater Lett; 59:3333–6 (2005).

Google Scholar

[11] Y. Y. Zhao, D. X. Sun, A novel sintering-dissolution process for manufacturing Al foams. Scr. Mater. 44, 105 (2001)

Google Scholar

[12] C.E. Wen, M. Mabuchi, M. Yamada, K. Shimojima, Y. Chino, T. Asahina, Processing of biomedical porous foam of Ti and Mg. Scr. Mater. 45, 1147 (2001).

DOI: 10.1016/s1359-6462(01)01132-0

Google Scholar

[13] N. Wenjuan, B. Chenguang, Q. Guibao, W. Qiang, Processing and properties of porous titanium using space holder technique. Mat. Sci. Eng. A506, 148 (2009).

Google Scholar

[14] A. Bansiddhi, D.C. Dunand, Shape memory NiTi foams produced by solid state replication with NaF. Intermetalics 15, 1612 (2007).

DOI: 10.1016/j.intermet.2007.06.013

Google Scholar

[15] A. Bansiddhi, D.C. Dunand, Shape memory NiTi foams produced by replication of NaCl space holders. Acta Biomat. 4, 1996 (2008).

DOI: 10.1016/j.actbio.2008.06.005

Google Scholar

[16] Y. W. Gu, M.S. Yong, B.Y. Tay, C.S. Lim, Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2. Mater. Sci. Eng. C. 29, 1515 (2009).

DOI: 10.1016/j.msec.2008.11.003

Google Scholar

[17] A. Mansourighasri, N. Muhamad, A.B. Sulong, Processing titanium foams using tapioca starch as a space holder. J. Mater. Proc. Techn. 212, 83 (2012).

DOI: 10.1016/j.jmatprotec.2011.08.008

Google Scholar

[18] Z. Gao, Q. Li, F. He, Y. Huang, Y. Wan, Preparation and Characterization of Ti-10Mo Alloy by Mechanical Alloying, Mater. Des. 42, 13–20 (2012).

Google Scholar

[19] B. Wang, E. Zhang, Open-celled porous Cu prepared by replication of NaCl space-holders, Int. J. Mech.Sci.50, 550–558 (2008).

Google Scholar

[20] B. Q. Li, F. Yan, X. Lu, Effect of pore structure on the compressive property of porous Ti produced by powder metallurgy technique, Mater. Sci. Eng. A534, 43–52 (2012).

Google Scholar

[21] G. Ryan, A. Pandit, and D. P. Apatsidis, Fabrication methods of Porous metals for use in Orthopaedic Applications, Journal of Biomaterials, Vol. 27, 2651-2670 (2006).

DOI: 10.1016/j.biomaterials.2005.12.002

Google Scholar

[22] M. Thieme, K.P. Wieters, F. Bergner, D. Scharnweber, H. Worch, J. Ndop, T. J. Kim, and W. Grill, Titanium powder sintering for preparation of a Porous functionally graded materials destined for orthopaedic implants, Journal of Materials Science: Materials in medicine Vol. 12 225-231 (2001).

DOI: 10.4028/www.scientific.net/msf.308-311.374

Google Scholar

[23] M. Ghazali Kamardan, N. Hidayah A. Zaidi, M. Noh Dalimin, A. Mujahid A. Zaidi, S. Bahrin Jamaludin and M. Mahadi. A.Jamil, The Sintering Temperature Effect on the Shrinkage Behavior of Cobalt Chromium Alloy, American Journal of Applied Sciences 7 (11): 1443-1448, (2010).

DOI: 10.3844/ajassp.2010.1443.1448

Google Scholar

[24] S. Ahmad, N. Muhamad, A. Muchtar, J. Sahari, K. R. Jamaludin, M. H. I. Ibrahim, N. H. Mohamad Nor and I. Murtadhahadi, Characterisation of Titanium Foams Sintered at Different Temperatures Prepared by the Slurry Method, Sains Malaysiana 39(1) : 77–82, (2010).

DOI: 10.4028/www.scientific.net/kem.447-448.671

Google Scholar