[1]
M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, N. H. G. Wadley, Metal foams: A design guide. USA: Butterworth-Heinemann; (2000).
DOI: 10.1016/b978-075067219-1/50001-5
Google Scholar
[2]
Banhart J. Manufacture, Characterization and applications of cellular metals and metal foams. Prog Mater. Sci., 46:559–632 (2001).
Google Scholar
[3]
Surace R., De Filippis L. A. C, Ludovic A. D., Boghetich G., Influence of Processing parameters on Aluminum foam produced by Space Holder technique. Mater. Des, 30: 1878–85 (2009).
DOI: 10.1016/j.matdes.2008.09.027
Google Scholar
[4]
S. Ahmad, N. Muhamad, A. Muchtar, J. Sahari , M. H. I. Ibrahim, K. R. Jamaludin and N. H. M. Nor, Development and characterization of titanium alloy foams, International Journal of Mechanical and Materials Engineering (IJMME), Vol. 5, No.2, 244-250 (2010).
DOI: 10.4028/www.scientific.net/kem.447-448.671
Google Scholar
[5]
Gibson L. J., Ashby M. F., Cellular solids – structures and properties. Cambridge: Cambridge University Press; (1997).
Google Scholar
[6]
L. J. Gibson, Mechanical behavior of metallic foamsAnnu. Rev. Mater. Sci.30, 191–227 (2000).
Google Scholar
[7]
J. Banhart, Light-metal foams, History of innovation and technological challenges, Adv. Eng. Mater.15, 82–111 (2013).
DOI: 10.1002/adem.201200217
Google Scholar
[8]
N. Jha, D. P. Mondal, J. D. Majumdar, A. Badkul, A.K. Jha, and A.K. Khare, Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route. Materials and Design 47:810-819 (2013).
DOI: 10.1016/j.matdes.2013.01.005
Google Scholar
[9]
Y. Hangai, K. Zushida , H. Fujii , R. Ueji , O. Kuwazuru and N. Yoshikawa; Friction Powder Compaction Process for fabricating open-celled Cu foam by sintering-dissolution process route Using NaCl spaceholder, Materials Science & Engineering A585 (2013); 468–474.
DOI: 10.1016/j.msea.2013.08.004
Google Scholar
[10]
Jiang B, Zhao N.Q., Shi C. S., Du X. W., Li J. J., Man H. C., A novel ... of the metal injection molding process with the space-holder technique, Mater Lett; 59:3333–6 (2005).
Google Scholar
[11]
Y. Y. Zhao, D. X. Sun, A novel sintering-dissolution process for manufacturing Al foams. Scr. Mater. 44, 105 (2001)
Google Scholar
[12]
C.E. Wen, M. Mabuchi, M. Yamada, K. Shimojima, Y. Chino, T. Asahina, Processing of biomedical porous foam of Ti and Mg. Scr. Mater. 45, 1147 (2001).
DOI: 10.1016/s1359-6462(01)01132-0
Google Scholar
[13]
N. Wenjuan, B. Chenguang, Q. Guibao, W. Qiang, Processing and properties of porous titanium using space holder technique. Mat. Sci. Eng. A506, 148 (2009).
Google Scholar
[14]
A. Bansiddhi, D.C. Dunand, Shape memory NiTi foams produced by solid state replication with NaF. Intermetalics 15, 1612 (2007).
DOI: 10.1016/j.intermet.2007.06.013
Google Scholar
[15]
A. Bansiddhi, D.C. Dunand, Shape memory NiTi foams produced by replication of NaCl space holders. Acta Biomat. 4, 1996 (2008).
DOI: 10.1016/j.actbio.2008.06.005
Google Scholar
[16]
Y. W. Gu, M.S. Yong, B.Y. Tay, C.S. Lim, Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH2. Mater. Sci. Eng. C. 29, 1515 (2009).
DOI: 10.1016/j.msec.2008.11.003
Google Scholar
[17]
A. Mansourighasri, N. Muhamad, A.B. Sulong, Processing titanium foams using tapioca starch as a space holder. J. Mater. Proc. Techn. 212, 83 (2012).
DOI: 10.1016/j.jmatprotec.2011.08.008
Google Scholar
[18]
Z. Gao, Q. Li, F. He, Y. Huang, Y. Wan, Preparation and Characterization of Ti-10Mo Alloy by Mechanical Alloying, Mater. Des. 42, 13–20 (2012).
Google Scholar
[19]
B. Wang, E. Zhang, Open-celled porous Cu prepared by replication of NaCl space-holders, Int. J. Mech.Sci.50, 550–558 (2008).
Google Scholar
[20]
B. Q. Li, F. Yan, X. Lu, Effect of pore structure on the compressive property of porous Ti produced by powder metallurgy technique, Mater. Sci. Eng. A534, 43–52 (2012).
Google Scholar
[21]
G. Ryan, A. Pandit, and D. P. Apatsidis, Fabrication methods of Porous metals for use in Orthopaedic Applications, Journal of Biomaterials, Vol. 27, 2651-2670 (2006).
DOI: 10.1016/j.biomaterials.2005.12.002
Google Scholar
[22]
M. Thieme, K.P. Wieters, F. Bergner, D. Scharnweber, H. Worch, J. Ndop, T. J. Kim, and W. Grill, Titanium powder sintering for preparation of a Porous functionally graded materials destined for orthopaedic implants, Journal of Materials Science: Materials in medicine Vol. 12 225-231 (2001).
DOI: 10.4028/www.scientific.net/msf.308-311.374
Google Scholar
[23]
M. Ghazali Kamardan, N. Hidayah A. Zaidi, M. Noh Dalimin, A. Mujahid A. Zaidi, S. Bahrin Jamaludin and M. Mahadi. A.Jamil, The Sintering Temperature Effect on the Shrinkage Behavior of Cobalt Chromium Alloy, American Journal of Applied Sciences 7 (11): 1443-1448, (2010).
DOI: 10.3844/ajassp.2010.1443.1448
Google Scholar
[24]
S. Ahmad, N. Muhamad, A. Muchtar, J. Sahari, K. R. Jamaludin, M. H. I. Ibrahim, N. H. Mohamad Nor and I. Murtadhahadi, Characterisation of Titanium Foams Sintered at Different Temperatures Prepared by the Slurry Method, Sains Malaysiana 39(1) : 77–82, (2010).
DOI: 10.4028/www.scientific.net/kem.447-448.671
Google Scholar