Speciation Analysis of Antimony and Arsenic in Soil and Remediation of Antimony and Arsenic in Contaminated Soils

Article Preview

Abstract:

Antimony and arsenic are recognized to be toxic carcinogens. With the development of chemical industry, antimony and arsenic pollution problems are becoming more and more serious in soil. This paper described speciation analysis of antimony and arsenic in soil in the latest technical progress. Speciation analysis of arsenic and antimony which use joint techniques and non joint techniques are summarized. This paper also introduced various remediation technologies for antimony and arsenic contaminated soil. Finally, the trend for future technical development in remediation of antimony and arsenic in contaminated soils and speciation analysis is prospected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

578-582

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Siegel, An Ecological Study of Arsenic-related Bladder Cancer in US counties: Effects of reference population and confounders on the calculated risks, New Mexico, Report SAND2004-1379P, Sandia National Laboratories, Albuquerque, NM. (2007).

Google Scholar

[2] P. A. Shelmerdine, C. R. Black, S. P. McGrath, S. D. Young, Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic, Environ. Pollut ., 157 (2009) 1589-1596.

DOI: 10.1016/j.envpol.2008.12.029

Google Scholar

[3] A.S. Kinsela, R.N. Collins, T. D. Waite. Speciation and transport of arsenic in an acid sulfate soil-dominated catchment, eastern Australia, Chemosphere, 82 (2011) 879-887.

DOI: 10.1016/j.chemosphere.2010.10.056

Google Scholar

[4] J. Zhang, X. D. Liu, L. Jiang, Speciation analysis of arsenic in soil samples, Rock and mineral analysis, 3 (2008) 179-183.

Google Scholar

[5] J. Chappell, B. Chiswell,H. Olszowy, Speciation of arsenic in a contaminated soil by solvent Extraction, Talanta, 42 (1995) 323-329.

DOI: 10.1016/0039-9140(95)01395-r

Google Scholar

[6] I. M. M. Rahman, Z. A. Begum, M. Nakano, Y. Furusho, T. Maki, H. Hasegawa, Selective separation of arsenic species from aqueous solutions with immobilized macrocyclic material containing solid phase extraction columns, Chemosphere, 82 (2011).

DOI: 10.1016/j.chemosphere.2010.10.045

Google Scholar

[7] H. M. Anawar , A. Garcia-Sanchez, I. Santa Regina, Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils , Chemosphere, 70 (2008) 1459-1467.

DOI: 10.1016/j.chemosphere.2007.08.058

Google Scholar

[8] W. Hammel, R. Debus, L. Steubing, Mobility of antimony in soil and its availability to plants, Chemosphere, 41 (2000) 1791-1798.

DOI: 10.1016/s0045-6535(00)00037-0

Google Scholar

[9] V. Ettler, M. Mihaljevicˇ, O. Sˇebek, Z. Nechutny´, Antimony availability in highly polluted soils and sediments – A comparison of single extractions, Chemosphere, 68 (2007) 455-463.

DOI: 10.1016/j.chemosphere.2006.12.085

Google Scholar

[10] S. Denys, K. Tack, J. Caboche, P. Delalain, Bioaccessibility, solid phase distribution and speciation of Sb in soils and in digestive fluids, Chemosphere, 74 (2008) 711-716.

DOI: 10.1016/j.chemosphere.2008.09.088

Google Scholar

[11] W. Quiroz, D. Olivares, M. Bravo, J. Feldmann, A. Raab, Antimony speciation in soils: Improving the detection limits using post-column pre-reduction hydride generation atomic fluorescence spectroscopy (HPLC/pre-reduction/HG-AFS), Talanta, 84 (2011).

DOI: 10.1016/j.talanta.2011.01.018

Google Scholar

[12] G. Okkenhaug, Y. G. Zhu, L. Luo, M. Lei , X. Li , J. Mulder . Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area, Environmental Pollution, 159 (2011) 2427-2434.

DOI: 10.1016/j.envpol.2011.06.028

Google Scholar

[13] K. Hockmann, M. Lenz, S. Tandy, M. Nachtegaal, M. Janousch, R. Schulin, Release of antimony from contaminated soil induced by redoxchanges, Journal of Hazardous Materials, 275 (2014) 215-221.

DOI: 10.1016/j.jhazmat.2014.04.065

Google Scholar

[14] M. Tang, H. Z. Zhang, L. Li, Extraction remediation technologies of arsenic contaminated soils using citric acid, Environmental pollution and control, 12 (2010) 31-34.

Google Scholar

[15] M. Jang, J. S. Hwang, S. I. Choi, Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediatingarsenic-contaminated soils in abandoned iron-ore mines, Chemosphere, 66 (2007) 8-17.

DOI: 10.1016/j.chemosphere.2006.05.056

Google Scholar

[16] S. Y. Oh, M. K. Yoon, I. -H. Kim, J.Y. Kim, W. Bae, Chemical extraction of arsenic from contaminated soil under subcritical conditions, Science of the Total Environment, 409 (2011) 3066-3072.

DOI: 10.1016/j.scitotenv.2011.04.054

Google Scholar

[17] M. H. H. Abbas, A. A. Abdelhafez, Role of EDTA in arsenic mobilization and its uptake by maize grown on an As-polluted soil, Chemosphere, 90 (2013) 588-594.

DOI: 10.1016/j.chemosphere.2012.08.042

Google Scholar

[18] S. Mukhopadhyay, S. Mukherjee, M. A. Hashim, B. S. Gupta, Application of colloidal gas aphron suspensions produced from Sapindus mukorossi for arsenic removal from contaminated soil, Chemosphere, 119 (2015) 355-362.

DOI: 10.1016/j.chemosphere.2014.06.087

Google Scholar

[19] M. Rivero-Huguet, W. D. Marshall, Scaling up a treatment to simultaneously remove persistent organic pollutants and heavy metals from contaminated soils, Chemosphere, 83 (2011) 668-673.

DOI: 10.1016/j.chemosphere.2011.02.007

Google Scholar

[20] Z. Min, L. Bohan, L. Ming, Z. Yong, Z. Qingru, O. Bin, Arsenic removal from contaminated soil using phosphoric acid and phosphate, Journal of Environmental Sciences, 20 (2008) 75-79.

DOI: 10.1016/s1001-0742(08)60011-x

Google Scholar

[21] V. Achal, X. Pan, Q. Fua, D. Zhang, Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli, Journal of Hazardous Materials, 201-202 (2012) 178-184.

DOI: 10.1016/j.jhazmat.2011.11.067

Google Scholar

[22] P. Jankong, P. Visoottiviseth, Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil, Chemosphere, 72 (2008) 1092–1097.

DOI: 10.1016/j.chemosphere.2008.03.040

Google Scholar

[23] K. Vaxevanidou, N. Papassiopi, I. Paspaliaris, Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques, Chemosphere, 70 (2008) 1329-1337.

DOI: 10.1016/j.chemosphere.2007.10.025

Google Scholar

[24] W. She, Y. C. Jie, H. C. Xing, M. Huang, W. L. Kang, Y. W. Lu, D. Wang, Uptake and accumulation of heavy metal by ramie (boehmeria nivea) growing on antimony mining area in Lengshuijiang city of Hunan province, Journal of Agro-environment science, 1 (2010).

Google Scholar

[25] R. Cidu, R. Biddau, E. Dore, A. Vacca, L. Marini, Antimony in the soil–water–plant system at the Su Suergiu abandoned mine (Sardinia, Italy): Strategies to mitigate contamination, Science of the Total Environment, 497 (2014) 319-331.

DOI: 10.1016/j.scitotenv.2014.07.117

Google Scholar

[26] M. E. Henry Bergmann , A. Savas Koparal, Electrochemical antimony removal from accumulator acid: Results from removal trials in laboratory cells, Journal of Hazardous Materials, 196 (2011) 59- 65.

DOI: 10.1016/j.jhazmat.2011.08.073

Google Scholar

[27] P. Dorjee, D. Amarasiriwardena, B. Xing, Antimony adsorption by zero-valent iron nanoparticles (nZVI): Ion chromatography–inductively coupled plasma mass spectrometry (IC–ICP-MS) study, Microchemical Journal, 116 (2014) 15-23.

DOI: 10.1016/j.microc.2014.03.010

Google Scholar