Molecular Dynamics Study on the Generation of Single-Walled Carbon Nanotubes Junction by Direct C60 Bombardment

Article Preview

Abstract:

Carbon nanotubes have been considered as promising materials for applications of nanodevices. As building blocks, carbon nanotube junctions formed by carbon-carbon covalent bonds are desired nanostructures for carbon nanotube based materials, however the formation of the junctions made of C-C bonds is still quite challenging. In this paper, a molecular dynamics study on the generation of single-walled carbon nanotubes junction by direct C60 bombardment is conducted. Results show that carbon nanotube junctions can be formed by direct C60 bombardment, however the structure of the formed junction is similar as the riveted structure in some case and the C60 bombardment may lead to uncontrollable bonding disorder in the joints.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-112

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. M. Bonard, N. Weiss, H. Kind, T. Stöckli, L. Forró, K. Kern, and A. Chatelain: Adv. Mater. Vol. 13 (2001), p.184.

DOI: 10.1002/1521-4095(200102)13:3<184::aid-adma184>3.0.co;2-i

Google Scholar

[2] W. Zhu, C. Bower, O. Zhou, G. Kochanski, and S. Jin: Appl. Phys. Lett. Vol. 75 (1999), p.873.

Google Scholar

[3] S. J. Tans, A. R. Verschueren, and C. Dekker: Nature, Vol. 393 (1998), p.49.

Google Scholar

[4] C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent: Appl. Phys. Lett. Vol. 70 (1997), p.1480.

Google Scholar

[5] J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, and M. Meyyappan:  Nano. Lett. Vol. 3 (2003), p.929.

Google Scholar

[6] P.J. Moriarty: Surf Sci Rep. Vol. 65 (2010), p.175.

Google Scholar

[7] J. Kozole, C. Szakal, M. Kurczy and N. Winograd: Appl. Surf. Sci. Vol. 252 (2006), p.6789.

Google Scholar

[8] A. Delcorte: Appl. Surf. Sci. Vol. 255 (2008), p.954.

Google Scholar

[9] K. D. Krantzman, D. B. Kingsbury and B. J. Garrison: App. Surf. Sci. Vol. 252 (2006), p.6463.

Google Scholar

[10] J. Cheng, J. Kozole, R. Hengstebeck and N. Winograd: J. Am. Soc. Mass. Spect. Vol. 18 (2007), p.406.

Google Scholar

[11] N. Wehbe, T. Mouhib, A. Prabhakaran, P. Bertrand and A. Delcorte: J. Am. Soc. Mass. Spectrom. Vol. 20 (2009), p.2294.

Google Scholar

[12] H. Rafii-Tabar, K. Ghafoori-Tabrizi: Prog. Surf. Sci. Vol. 67 (2001), p.217.

Google Scholar

[13] X.M. Yang, Y.H. Huang, L. J Wang, Z.H. Han, A.C. To: RSC. Adv. Vol. 4 (2014), p.56313 (Accepted).

Google Scholar

[14] X.M. Yang, L.J. Wang, Y.H. Huang, Z.H. Han and A.C. To: Phys. Chem. Chem. Phys. Vol. 16 (2014), p.21615.

Google Scholar

[15] S.J. Stuart, A.B. Tutein and J.A. Harrison: J. Chem. Phys. Vol. 112 (2000), p.6472.

Google Scholar

[16] A.V. Krasheninkov and K. Nordlund: Nucl. Instr. Meth. Phys. Res. B. Vol. 216 (2004), p.355.

Google Scholar

[17] S.J. Plimpton: J. Comput. Phys. Vol. 117 (1995), p.1.

Google Scholar