Microstructure and Mechanical Properties of Tough Phase Layers of a NiCoCrAl/YSZ Multiscalar Microlaminate

Article Preview

Abstract:

One multiscalar microlaminate comprising 66 thin strong layer stacks of NiCoCrAl / ZrO2-8wt.%Y2O3 (YSZ) and 5 thick tough phase layers of NiCoCrAl whose thicknesses ranged from 5μm to 25μm was fabricated by Electron Beam Physical Vapor Deposition (EB-PVD) and followed by hot pressing treatment. Scanning electron microscopy was used to characterize the microstructures and failure mode of the tough phase layers. Tensile tests and nanoindentation tests were performed to evaluate the mechanical properties of the tough phase layers. The influence of thicknesses of tough phase layers on their microstructure and mechanical properties was investigated. It was found that with the increasing thicknesses of the tough phase layers, their hardness decreased, but their plasticity increased. There was a critical thickness for the tough phase layers between 13μm and 20μm. The tough phase layers with thickness less than the critical value displayed the different microstructure and failure mode from those with thickness more than the critical value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-19

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.H. Shang, D. Van Heerden, A.J. Gavens: Acta. Mater Vol. 48 (2000), p.3543.

Google Scholar

[2] A. Parul, C.T. Sun: Compos. Sci. Technol Vol. 64 (2004), p.1178.

Google Scholar

[3] D.V. Heerden, A.J. Gavens, T. Foecke and T.P. Weihs: Mater. Sci. Eng. A Vol. 261 (1999), p.212.

Google Scholar

[4] J. Heathcote, G.R. Odette, G.E. Lucas: Acta. Mater Vol. 44 (1996), p.4289.

Google Scholar

[5] G.S. Was, T. Foecke: Thin solid film Vol. 286 (1996), p.1.

Google Scholar

[6] M. Vill, D.P. Adams, S.M. Yalisove and J.C. Bilello: Acta. Metal. Mater Vol. 43(2) (1995), p.427.

Google Scholar

[7] X.D. He, Y. Xin, M.W. Li, Y. Sun: J. Alloy Compd Vol. 467 (2009), p.347.

Google Scholar

[8] D.E. Wolfe, J. Singh, R.A. Miller: Surf. Coat. Tech Vol. 190 (2005), p.132.

Google Scholar

[9] E.D. Wolfe, J. Singh: Surf. Coat. Tech Vol. 165 (2003), p.8.

Google Scholar

[10] J. Byung-Koog, M. Hideaki: J. Eur. Ceram. Soc Vol. 26 (2006), p.1585.

Google Scholar

[11] X. D He, X. Li, Y. Sun: J. Magn. Magn. Mater Vol. 320 (2008), p.217.

Google Scholar

[12] U. Schulz, M. Schmucker: Mater. Sci. Eng. A Vol. 276 (2000), p.1.

Google Scholar

[13] G.D. Shi, Z. Wang, J. Liang, Z.J. Wu, G.Q. Chen: Rare Metal. Mat. Eng Vol. 40 (2011), p.498.

Google Scholar

[14] I.A. Polonsky, T.P. Chang, L.M. Keer, W.D. Sproul: Wear Vol. 215 (1998), p.191.

Google Scholar

[15] S. Ulrich, C. Ziebert, M. Stqber, E. Nold, H. Holleck, M. Gfken, E. Schweitzer, P. Schlogmacher: Surf. Coat Technol Vol. 188-189 (2004), p.331.

Google Scholar

[16] J. Musil, F. Kunc, H. Zeman, H. Polakova: Surf. Coat Technol Vol. 154 (2002), p.304.

Google Scholar

[17] R. Liu, W. Xu, M.X. Yao, P.C. Patnaik, X.J. Wu: Scripta Mater Vol. 53 (2005), p.1351.

Google Scholar

[18] R.O. Ritchie, J.F. Knott, J.R. Rice: J. Mech. Phys. Solids Vol. 21 (1973), p.395.

Google Scholar