[1]
A. A. Oehlerta: Room temperature creep and the initiation of stress corrosion cracking in AerMet 100. Materials Forum, 1993, 17 (4): 415 ~429.
Google Scholar
[2]
A. A. Oehlerta: Room temperature creep of high strength steels. Acta Metallurgicaet Materialia, 1994. 42(5): 1493 ~4508.
Google Scholar
[3]
J. Cwiek: Hydrogen assisted cracking of high-strength weldable steels in sea-water, Journal of Materials Processing Technology, Elsevier, 164~165(2005), 1007~1013.
DOI: 10.1016/j.jmatprotec.2005.02.083
Google Scholar
[4]
E. Fallahmohammadi: Measurement of lattice and apparent diffusion coefficient of hydrogen in X65 and F22 pipeline steels, Int. J. of Hydrogen Energy, Elsevier, 38(2013), 2531~2543.
DOI: 10.1016/j.ijhydene.2012.11.059
Google Scholar
[5]
S. Serebrinski: A quantum-mechanically informed continuum model of hydrogen embrittlement, Journal of Mechanics and Physics of Solids, Elsevier, 52(2004), 2403~2430.
DOI: 10.1016/j.jmps.2004.02.010
Google Scholar
[6]
R. P. Gangloff: Hydrogen assisted cracking of high strength alloys, Comprehensive Structural Integrity, Vol. 6, Elsevier Science, New York, (2003).
Google Scholar
[7]
V. Olden: FE Simulation of Hydrogen Diffusion in Duplex Stainless Steel – Influence of Phase Shape, an Size and Embeded Deffects, Proceedings of the Twenty-third (2013).
Google Scholar
[8]
E. S. Mioara: Hydrogen Embrittlement of Ferrous Materials, Ph.D. thesis of Brussel University, Belgium, ( 2006), 143~176.
Google Scholar
[9]
C. Pan: Hydrogen Embrittlement induced by atomic hydrogen and hydrogen induced martensites in type 304L stainless steel, Materials Science and Engineering, Elsevier, A 351(2003), 293~296.
DOI: 10.1016/s0921-5093(02)00856-0
Google Scholar
[10]
T. Zhang: Study of correlation between hydrogen induced stress and hydrogen embrittlement, Materials Science and Engineering, Elsevier, A 347(2003), 291~295.
DOI: 10.1016/s0921-5093(02)00600-7
Google Scholar
[11]
L. J. Qiao: Prediction of threshold stress intensity factor for hydrogen induced intergranular cracking of tubular steels, Materials Science and Engineering, Elsevier, A 276(2000), 141~144.
DOI: 10.1016/s0921-5093(99)00444-x
Google Scholar
[12]
S. Kwofie, H. D. Chandler: Fatigue life prediction under conditions where cyclic creep-fatigue interaction occurs, International J. of Fatigue, Elsevier, 29(2007), 2117~2124.
DOI: 10.1016/j.ijfatigue.2007.01.022
Google Scholar
[13]
R. Rajendran, J. K. Paik: Creep life prediction of high strength steel plate, Materials and Design, Elsevier, 29(2008), 427~435.
DOI: 10.1016/j.matdes.2007.01.003
Google Scholar
[14]
K. Harry: Creep analysis, New York, John Wiley & Sons, (1980).
Google Scholar
[15]
L.F. Coffin Jr: J. Eng. Mater. Tech. ASME 76 (1954), 931.
Google Scholar
[16]
S.S. Manson: NASA Technical Note 2933, Cleveland, (1954).
Google Scholar