[1]
H. Zhu, Z. Liu, D. Kong, Y. Wang, X. Yuan, Z. Xie, Synthesis of ZSM-5 with intracrystal or intercrystal mesopores by polyvinyl butyral templating method, J. Colloid Interf. Sci., 331 (2009) 432-438.
DOI: 10.1016/j.jcis.2008.11.071
Google Scholar
[2]
N. Rahimi, R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review, Appl. Catal. A., 398 (2011) 1-17.
DOI: 10.1016/j.apcata.2011.03.009
Google Scholar
[3]
Q. Yu, X. Meng, J. Liu, C. Li, Q. Cui, A fast organic template-free, ZSM-11 seed-assisted synthesis of ZSM-5 with good performance in methanol-to-olefin. Micropor. Mesopor. Mat., 181 (2013) 192-200.
DOI: 10.1016/j.micromeso.2013.07.034
Google Scholar
[4]
C. Li, C. Yang, H. Shan, Maximizing Propylene Yield by Two-Stage Riser Catalytic Cracking of Heavy Oil, Ind. Eng. Chem. Res. 46 (2007) 4914-4920.
DOI: 10.1021/ie061420l
Google Scholar
[5]
L. Zhao, B. Shen, J. Gao, C. Xu, Maximizing Propylene Yield by Two-Stage Riser Catalytic Cracking of Heavy Oil, J. Catal. 258 (2008)228-234.
Google Scholar
[6]
Q. Yu, X.P. Wang, N. Xing, H.L. Yang, S. X Zhang, The role of protons in the NO reduction by acetylene over ZSM-5, J. Catal. 245 (2007) 124-132.
DOI: 10.1016/j.jcat.2006.10.002
Google Scholar
[7]
Q. Yu, M. Richter, F. X Kong, L. D Li, G. J Wu, N. J Guan, Selective catalytic reduction of NO by hydrogen over Pt/ZSM-35, Catal. Today. 158 (2010) 452-458.
DOI: 10.1016/j.cattod.2010.06.031
Google Scholar
[8]
K. P. Dey, S. Ghosh, M. K. Naskar, Organic template-free synthesis of ZSM-5 zeolite particles using rice husk ash as silica source, Ceramics International. 39 (2013) 2153-2157.
DOI: 10.1016/j.ceramint.2012.07.083
Google Scholar
[9]
T. Xue, Y.M. Wang, M.Y. He, Facile synthesis of nano-sized NH4-ZSM-5 zeolites, Micropor. Mesopor. Mat. 156 (2012) 29-35.
DOI: 10.1016/j.micromeso.2012.02.014
Google Scholar
[10]
D. Nandan, S.K. Saxen, N. Viswanadham, Synthesis of hierarchical ZSM-5 using glucose as a templating precursor, J. Mater. Chem. 2 (2014) 1054-1059.
DOI: 10.1039/c3ta13904b
Google Scholar
[11]
J.L. Jiang, C.S. Duanmu, Y. Yang, X. Gu, J. Chen, Synthesis and characterization of high siliceous ZSM-5 zeolite from acid-treated palygorskite, Powder Tech. 251 (2014) 9-14.
DOI: 10.1016/j.powtec.2013.10.020
Google Scholar
[12]
F. Hui, Y.H. Chen, C.Y. Li, H.H. Shan, In-situ synthesis of ZSM-5 on silica gel and studies on its catalytic activity, J Fuel ChemTechnol. 36 (2008) 144-150.
DOI: 10.1016/s1872-5813(08)60015-8
Google Scholar
[13]
R.K. Vempati, R. Boarde, R.S. Hegde, S. Komarneni, Template free ZSM-5 from siliceous rice hull ash with varying C contents, Micropor. Mesopor. Mat., 93 (2006) 134-140.
DOI: 10.1016/j.micromeso.2006.02.008
Google Scholar
[14]
Y. Cheng, L. J. Wang, J. Li, Y. C. Yang, X.Y. Sun, Preparation and characterization of nanosized ZSM-5 zeolites in the absence of organic template, Mat. Lett., 59 (2005) 3427-3430.
DOI: 10.1016/j.matlet.2005.06.008
Google Scholar
[15]
P. Wang. B.J. Shen, J.S. Gao, Synthesis of ZSM-5 zeolite from expanded perlite and its catalytic performance in FCC gasoline aromatization, Catal. Today 125 (2007) 155-162.
DOI: 10.1016/j.cattod.2007.03.010
Google Scholar
[16]
S. Frisch, L. Rosken, Ion conductivity of nano-scaled Al-rich ZSM-5 synthesized in the pores of carbon black, Micropor. Mesopor. Mat. 120 (2009) 47-52.
DOI: 10.1016/j.micromeso.2008.08.057
Google Scholar
[17]
N. Viswanadham, R. Kamble, M. Singh, M. Kumar, G.M. Dhar, Catalytic properties of nano-sized ZSM-5 aggregates, Catal. Today. 141 (2009) 182-186.
DOI: 10.1016/j.cattod.2008.03.026
Google Scholar
[18]
H.T. Tuan, I. Bae, Y.N. Jang, S.C. Chaeb, Y.B. Chae, D.S. Suhr, Hydrothermal synthesis of ZSM-5 zeolite using siliceous mudstone, J. Ceramic Pro Res. 2 (2010) 204-208.
Google Scholar
[19]
O.G. Somani, A.L. Choudhari, B.S. Raob, S.P. Mirajkar, Enhancement of crystallization rate by microwave radiation: synthesis of ZSM-5, Mat Chem Phys. 82 (2003) 538-545.
DOI: 10.1016/s0254-0584(03)00224-4
Google Scholar