[1]
D. J. Srolovitz, G. S. Grest, M. P. Anderson, Computer simulation of recrystallization-I: Homogeneous nucleation and growth, Acta Metall., 34(1986)1833–1845.
DOI: 10.1016/0001-6160(86)90128-8
Google Scholar
[2]
D. J. Srolovitz, G. S. Grest, M. P. Anderson, A. D. Rollett, Computer simulation of recrystallization- II: Heterogeneous nucleation and growth, Acta Metall., 36(1988) 2115–2128.
DOI: 10.1016/0001-6160(88)90313-6
Google Scholar
[3]
A. D. Rollett, M. J. Luton, D. J. Srolovitz, Computer simulation of dynamic recrystallization, Acta Metall. Mater., 40 (1992) 43–55.
DOI: 10.1016/0956-7151(92)90198-n
Google Scholar
[4]
P. Peczak, M. J. Luton, A Monte Carlo study of the influence of dynamic recovery on dynamic recrystallization, Acta Metall., 41 (1993) 59–71.
DOI: 10.1016/0956-7151(93)90339-t
Google Scholar
[5]
P. Peczak, A Monte Carlo study of influence of deformation temperature on dynamic recrystallization, Acta Metall. Mater., 43(1995)1279-1291.
DOI: 10.1016/0956-7151(94)00280-u
Google Scholar
[6]
A. D. Rollett, Overview of modeling and simulation of recrystallization, Prog. Mater Sci., 42 (1997) 79–99.
Google Scholar
[7]
M. M. Tong, C. L. Mo, D. Z. Li, Y. Y. Li, Simulation of the dynamic recrystallization of pure copper using Monte Carlo method, Acta Metall. Sin., 38 (2002) 745–749, in Chinese.
Google Scholar
[8]
Zhang J X, Guan X J, Sun S. A modified Monte Carlo method in grain growth simulation, Acta Metall. Sin., 40(2004) 457–461, in Chinese.
Google Scholar
[9]
Y. Qiang, K. E. Sven, A multi-scale approach for microstructure prediction in thermo-mechanical processing of metals, J. Mater. Process. Technol., 169 (2005) 493–502.
Google Scholar
[10]
J. X. Zhang, G. Yang, L. Zhong, New Monte Carlo Potts model in metal recrystallization simulation, J. Chongqing Jiaotong University(Natural Science), 28 (2009)789–793, in Chinese.
Google Scholar
[11]
D. Wolf, Read-Shockley model for high-angle grain boundaries, Scripta Matall., 23 (1989) 1713-1718.
DOI: 10.1016/0036-9748(89)90348-7
Google Scholar
[12]
W. Roberts, B. Ahlblom, A nucleation criterion for dynamic recrystallization during hot working, Acta Metall., 26(1978) 801–813.
DOI: 10.1016/0001-6160(78)90030-5
Google Scholar
[13]
C. H. J. Davies, Growth of nuclei in a cellular automaton simulation of recrystallization, Scripta Mater., 36(1997) 35–40.
Google Scholar
[14]
G. B. Sarma, B. Radhakrishnan, T. Zacharia, Finite element simulations of cold deformation at the mesoscale, Comput. Mater. Sci., 12(1998) 105–123.
DOI: 10.1016/s0927-0256(98)00036-6
Google Scholar
[15]
R. Ding, Z. X. Guo, Microstructural modelling of dynamic recrystallization using an extended cellular automaton approach, Comput. Mater. Sci., 23(2002) 209-218.
DOI: 10.1016/s0927-0256(01)00211-7
Google Scholar
[16]
F. J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Oxford: Pergamon Press, 1995, p.17.
Google Scholar
[17]
Y. B. Chun, S. L. Semiatin, S. K. Hwang, Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled commercial-purity titanium, Acta Mater., 54(2006) 3673–3689.
DOI: 10.1016/j.actamat.2006.03.055
Google Scholar
[18]
G. Gottstein, L. S. Shvindlerman. On the orientation dependence of grain boundary migration, Scripta Metall. Mater., 27(1992) 1515–1520.
DOI: 10.1016/0956-716x(92)90137-4
Google Scholar