A Modified Monte-Carlo Potts Model for Dynamic Recrystallization

Article Preview

Abstract:

In order to improve the microstructure evolution modeling of dynamic recrystallization (DRX) in agreement with physical experiment, a modified Monte-Carlo (MC) Potts model for simulating DRX process was proposed in this paper under the consideration of the inhomogeneous stored energy distribution related to grain sizes, the nucleation criteria related to critical dislocation density, the site energy change related to grain preferred-growth, the combination of macroscopic thermo-mechanical parameters and microscopic material parameters, and the relationship between MC calculation steps and real DRX time. The results show that the modified model can better simulate the basic characteristics of dynamic recrystallization of metallic materials during forging, which the recrystallized grains nucleate mainly in the deformed regions with high stored energy and preferentially grow up by merging adjacent deformed grains with high stored energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

280-287

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. J. Srolovitz, G. S. Grest, M. P. Anderson, Computer simulation of recrystallization-I: Homogeneous nucleation and growth, Acta Metall., 34(1986)1833–1845.

DOI: 10.1016/0001-6160(86)90128-8

Google Scholar

[2] D. J. Srolovitz, G. S. Grest, M. P. Anderson, A. D. Rollett, Computer simulation of recrystallization- II: Heterogeneous nucleation and growth, Acta Metall., 36(1988) 2115–2128.

DOI: 10.1016/0001-6160(88)90313-6

Google Scholar

[3] A. D. Rollett, M. J. Luton, D. J. Srolovitz, Computer simulation of dynamic recrystallization, Acta Metall. Mater., 40 (1992) 43–55.

DOI: 10.1016/0956-7151(92)90198-n

Google Scholar

[4] P. Peczak, M. J. Luton, A Monte Carlo study of the influence of dynamic recovery on dynamic recrystallization, Acta Metall., 41 (1993) 59–71.

DOI: 10.1016/0956-7151(93)90339-t

Google Scholar

[5] P. Peczak, A Monte Carlo study of influence of deformation temperature on dynamic recrystallization, Acta Metall. Mater., 43(1995)1279-1291.

DOI: 10.1016/0956-7151(94)00280-u

Google Scholar

[6] A. D. Rollett, Overview of modeling and simulation of recrystallization, Prog. Mater Sci., 42 (1997) 79–99.

Google Scholar

[7] M. M. Tong, C. L. Mo, D. Z. Li, Y. Y. Li, Simulation of the dynamic recrystallization of pure copper using Monte Carlo method, Acta Metall. Sin., 38 (2002) 745–749, in Chinese.

Google Scholar

[8] Zhang J X, Guan X J, Sun S. A modified Monte Carlo method in grain growth simulation, Acta Metall. Sin., 40(2004) 457–461, in Chinese.

Google Scholar

[9] Y. Qiang, K. E. Sven, A multi-scale approach for microstructure prediction in thermo-mechanical processing of metals, J. Mater. Process. Technol., 169 (2005) 493–502.

Google Scholar

[10] J. X. Zhang, G. Yang, L. Zhong, New Monte Carlo Potts model in metal recrystallization simulation, J. Chongqing Jiaotong University(Natural Science), 28 (2009)789–793, in Chinese.

Google Scholar

[11] D. Wolf, Read-Shockley model for high-angle grain boundaries, Scripta Matall., 23 (1989) 1713-1718.

DOI: 10.1016/0036-9748(89)90348-7

Google Scholar

[12] W. Roberts, B. Ahlblom, A nucleation criterion for dynamic recrystallization during hot working, Acta Metall., 26(1978) 801–813.

DOI: 10.1016/0001-6160(78)90030-5

Google Scholar

[13] C. H. J. Davies, Growth of nuclei in a cellular automaton simulation of recrystallization, Scripta Mater., 36(1997) 35–40.

Google Scholar

[14] G. B. Sarma, B. Radhakrishnan, T. Zacharia, Finite element simulations of cold deformation at the mesoscale, Comput. Mater. Sci., 12(1998) 105–123.

DOI: 10.1016/s0927-0256(98)00036-6

Google Scholar

[15] R. Ding, Z. X. Guo, Microstructural modelling of dynamic recrystallization using an extended cellular automaton approach, Comput. Mater. Sci., 23(2002) 209-218.

DOI: 10.1016/s0927-0256(01)00211-7

Google Scholar

[16] F. J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Oxford: Pergamon Press, 1995, p.17.

Google Scholar

[17] Y. B. Chun, S. L. Semiatin, S. K. Hwang, Monte Carlo modeling of microstructure evolution during the static recrystallization of cold-rolled commercial-purity titanium, Acta Mater., 54(2006) 3673–3689.

DOI: 10.1016/j.actamat.2006.03.055

Google Scholar

[18] G. Gottstein, L. S. Shvindlerman. On the orientation dependence of grain boundary migration, Scripta Metall. Mater., 27(1992) 1515–1520.

DOI: 10.1016/0956-716x(92)90137-4

Google Scholar