Enhanced the Negative Charges of Antheraea pernyi Silk Fibroin by Methylglyoxal Modification

Article Preview

Abstract:

Antheraea pernyi silk fibroin has favorable biocompatibility, good bioactivity and controllable biodegradability, meeting the basic requirements of controlled drug release carriers. Enhancing the negative charge of silk fibroin could further increase the encapsulation and loading efficiency of positively charged drugs. In this study, Antheraea pernyi silk fibroin was chemically modified by methylglyoxal in aqueous solution. The electric charge properties of Antheraea pernyi silk fibroin were examined to characterize the modification, the results indicated that the isoelectric point of Antheraea pernyi silk fibroin decreased from 4.5 to 3.9, and the zeta potential reduced from-11.7 mV to-12.8 mV. Amino acid analysis and 1H-NMR spectra showed that arginine residue of Antheraea pernyi silk fibroin side chain was modified by methylglyoxal for enhancing negative charge of silk fibroin. These results suggested that methylglyoxal-modified Antheraea pernyi silk fibroin could be considered as a potential starting material in loading positively charged drugs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

307-313

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Shimizu, T. Mori, M. Tomita and K. Tsumoto: Langmuir Vol. 30 (2014), pp.554-563.

Google Scholar

[2] I. Drachuk, O. Shchepelina, S. Harbaugh, N. Kelley‐Loughnane, M. Stone and V.V. Tsukruk: Small Vol. 9 (2013), pp.3128-3137.

DOI: 10.1002/smll.201202992

Google Scholar

[3] M.C. Koetting, N.A. Peppas: Int. J. Pharm. Vol. 471 (2014), pp.83-91.

Google Scholar

[4] J. Yan, Y.Z. Du, F.Y. Chen, H. Yuan and F.Q. Hu: Mol. Pharmaceutics Vol. 10 (2013), pp.2568-2577.

Google Scholar

[5] O. Germershaus, V. Werner, M. Kutscher and L. Meinel: Biomaterials Vol. 35 (2014), pp.3427-3434.

DOI: 10.1016/j.biomaterials.2013.12.083

Google Scholar

[6] A.S. Nowacek, S. Balkundi, J.E. McMillan, U. Roy, A.M. Skinner, R.L. Mosely, G. Kanmogne, A.V. Kabanov, T. Bronich, H.E. Gendelman: J. Controlled Release Vol. 150 (2011), pp.204-211.

DOI: 10.1016/j.jconrel.2010.11.019

Google Scholar

[7] C. Vepari, D.L. Kaplan: Prog. Polym. Sci. Vol. 32 (2007), pp.991-1007.

Google Scholar

[8] Y. Cao, B. Wang: Int. J. Mol. Sci. Vol. 10 (2009), pp.1514-1524.

Google Scholar

[9] L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D.L. Kaplan: Biomaterials Vol. 26 (2005), pp.147-155.

DOI: 10.1016/j.biomaterials.2004.02.047

Google Scholar

[10] B. Kundu, N.E. Kurland, S. Bano, C. Patra, F.B. Engel, V.K. Yadavalli and S.C. Kundu: Prog: Polym. Sci. Vol. 39 (2014), pp.251-267.

DOI: 10.1016/j.progpolymsci.2013.09.002

Google Scholar

[11] H. Mori, M. Tsukada: Rev. Mol. Biotechnol. Vol. 74 (2000), pp.95-103.

Google Scholar

[12] G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J.S. Chen, H. Lu, J. Richmond and D.L. Kaplan: Biomaterials Vol. 24 (2003), pp.401-416.

DOI: 10.1016/s0142-9612(02)00353-8

Google Scholar

[13] B. Kundu, R. Rajkhowa, S.C. Kundu and X.G. Wang: Adv. Drug Delivery Rev. Vol. 65 (2013), pp.457-470.

DOI: 10.1016/j.addr.2012.09.043

Google Scholar

[14] P.Y. Wu, Q. Liu, R.T. Li, J. Wang, X. Zhen, G.F. Yue, H.Y. Wang, F.B. Cui, F.L. Wu, M. Yang, X.P. Qian, L.X. Yu, X.Q. Jiang, B.R. Liu: ACS Appl. Mater. Interfaces Vol. 5 (2013), pp.12638-12645.

DOI: 10.1021/am403992b

Google Scholar

[15] T. Yucel, M.L. Lovett, D.L. Kaplan: J. Controlled Release Vol. (2014).

Google Scholar

[16] R. Elia, D.R. Newhide, P.D. Pedevillano, G.R. Reiss, M.A. Firpo, E.W. Hsu, D.L. Kaplan, G.D. Prestwich, R.A. Peattie and R.A. Peattie: J. Biomater. Appl. Vol. 27 (2013), pp.749-762.

DOI: 10.1177/0885328211424516

Google Scholar

[17] M.A. Marin, R.R. Mallepally, M.A. McHugh: J. Supercrit. Fluid. Vol. 91 (2014), pp.84-89.

Google Scholar

[18] J. He, Y. Cheng, S. Cui: J. Appl. Polym. Sci. Vol. 128 (2013), pp.1081-1088.

Google Scholar

[19] K. Lee, H.Y. Kweon, J. Yeo, S. Woo, S. Han and J.H. Kim: Int. J. Biol. Macromol. Vol. 48 (2011), pp.223-226.

Google Scholar

[20] X.F. Li, C. Zhang, L.S. Wang, C.L. Ma, W.C. Yang and M.Z. Li: J. Chem. Vol. (2013).

Google Scholar

[21] C.X. Zhao, X.F. Wu, Q. Zhang, S.Q. Yan and M.Z. Li: Int. J. Biol. Macromol. Vol. 48 (2011), pp.249-255.

Google Scholar

[22] A. Tandle, D.G. Blazer, S.K. Libutti: J. Transl. Med. Vol. 2 (2004), p.22.

Google Scholar

[23] Y. Liu, R.C. You, G.Y. Liu, X.F. Li, S.W. Sheng, J.C. Yang, M.Z. Li: Int. J. Mol. Sci. Vol. 15 (2014), pp.7049-7063.

Google Scholar

[24] M. Oba, S. Fukushima, K. Kanayama, K. Aoyagi, N. Nishiyama, H. Koyama, K. Kataoka: Bioconjuate Chem. Vol. 18 (2007), pp.1415-1423.

Google Scholar

[25] S.Z. Lu, J. Wang, L. Mao, G.J. Li and J. Jin: J. Nano Res. Vol. 27 (2014), pp.75-81.

Google Scholar

[26] A. Klopfer, R. Spanneberg: J. Agric. Food Chem. Vol. 59 (2011), pp.394-401.

Google Scholar

[27] T. Henle, A.W. Walter, R. Haegner, Z. Lebensm: Unters. Forsch. Vol. 199 (1994), pp.55-58.

Google Scholar

[28] M.A. Glomb, G. Lang: J. Agric. Food Chem. Vol. 49 (2001), pp.1493-1501.

Google Scholar

[29] Y. Gotoh, M. Tsukada, N. Minoura: J. Biomed. Mater. Res. Vol. 39 (1998), pp.351-357.

Google Scholar

[30] Y. Gotoh, M. Tsukada, N. Minoura: In. J. Biol. Macromol. Vol. 19 (1996), pp.41-44.

Google Scholar