Baddeleyite Type Monoclinic Zirconium Oxide Nanocrystals Formation

Article Preview

Abstract:

We report successful synthesis of baddeleyite type monoclinic zirconium oxide nanocrystals formation. The product mixture of zirconium incubated at room temperature for 7 days were thoroughly investigated employing X-ray diffraction, Raman spectroscopy and transmission electron microscopy studies. XRD and Raman studies revealed the formation of baddeleyite type monoclinic zirconium oxide nanocrystals. TEM studies revealed the nanocrystal formation with size ranging from 100 nm to 200 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-82

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.E. Reyes-Lillo, K.F. Garrity, K.M. Rabe, Phys. Rev. B: Condens. Matter 90 (2014) 140103.

Google Scholar

[2] H. Torabmostaedi, T. Zhang, J. Therm. Spray Technol. 20 (2014) 15p.

Google Scholar

[3] V.S. Dang, M. Banerjee, H. Zhu, N.B. Srinivasan, H. Parala, J. Pfetzing-Micklich, A.D. Wieck, A. Devi, Chem. Vap. Deposition (2014) DOI: 10. 1002/cvde. 201407124.

DOI: 10.1002/cvde.201407124

Google Scholar

[4] Q. Chen, Y. Chang, C. Shao, J. Zhang, J. Chen, M. Wang, Y. Long, J. Mater. Sci. Technol. 66 (2014) 74-80.

Google Scholar

[5] C. Wang, Y. Le, B. Cheng, Ceram. Int. 40 (2014) 10847-10856.

Google Scholar

[6] Q. Zhang, R. Xu, P. Xu, R. Chen, Q. He, J. Zhong, X. Gu, Desalin. 256 (2014) 71-74.

Google Scholar

[7] W. Jiang, J. He, J. Zhong, J. Lu, S. Yuan, B. Liang, Appl. Surf. Sci. 307 (2014) 407–413.

Google Scholar

[8] G.C. Pradhan, S. Dash, S.K. Swain, Mater. Sci. Semicond. Process. 23 (2014) 115–121.

Google Scholar

[9] S.K. Selvaraj, J. Parulekar, C.G. Takoudis, J. Vac. Sci. Technol., A 32 (2014) 010601.

Google Scholar

[10] S.W. Liu, J.C. Zhou, R.X. Liu, Adv. Mat. Res. 881-883 (2014) 933-939.

Google Scholar

[11] R. Yuvakkumar, J. Suresh, A. Joseph Nathanael, M. Sundrarajan, S.I. Hong, Mater. Sci. Eng., C 41 (2014) 17-27.

Google Scholar

[12] R. Yuvakkumar, J. Suresh, A. Joseph Nathanael, M. Sundrarajan, S.I. Hong, Mat. Lett. 128 (2014) 170-174.

Google Scholar

[13] R. Yuvakkumar, J. Suresh, B. Saravanakumar, A. Joseph Nathanael, S.I. Hong, V. Rajendran, Spectrochim. Acta Part A 137 (2015) 250-258.

DOI: 10.1016/j.saa.2014.08.022

Google Scholar

[14] R. Yuvakkumar, A. Joseph Nathanael, S.I. Hong, RSC Adv. 4 (2014) 44495-44499.

Google Scholar

[15] R. Yuvakkumar, V. Elango, V. Rajendran, N. Kannan, Synth. React. Inorg. Met. -Org. Chem. 41 (2011) 309-314.

Google Scholar

[16] R. Yuvakkumar, V. Elango, V. Rajendran, N. Kannan, J. Exp. Nanosci. 9 (2014) 272-281.

Google Scholar

[17] R. Yuvakkumar, V. Elango, V. Rajendran, N. Kannan, Digest J. Nanomaterials and Biostructures 6 (2011) 1771-1776.

Google Scholar

[18] R. Yuvakkumar, A. Joseph Nathanael, V. Rajendran, S.I. Hong, J. Sol-Gel Sci. Technol. 72 (2014) 198–205. 250-258.

DOI: 10.1007/s10971-014-3455-9

Google Scholar

[19] R. Yuvakkumar, P. Peranantham, A. Joseph Nathanael, D. Nataraj, D. Mangalaraj, S.I. Hong, J. Nanosci. Nanotechnol. 15 (2015) 2523-2530.

DOI: 10.1166/jnn.2015.9787

Google Scholar