Effect of Calcination on the Basic Strength of Surface Modified Nano-Zinc Oxide Characterised by FTIR and Back Titration Methods

Article Preview

Abstract:

The use of metal oxides in heterogeneous base catalysis has gained a large interest due to their application in many chemical and industrial processes and is environmental friendly. Basic metal oxides are commonly used and their structures, morphology and performance can be modified by method of preparation and thermal activation. In this study, surface modified amphoteric zinc oxide was prepared via hydration-dehydration method and characterised by TGA and FTIR. The basic strength at various temperatures is characterised by FTIR and back titration analyses. The results shows that surface modified zinc oxide has the highest basic strength of 1.453mmolg-1 at 400°C making it a relatively good and suitable compound for use in heterogeneous basic catalysis. This result is also supported by FTIR spectra which show possible relationship between the Lewis O2- and increasing basic strength.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

326-332

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Liu, X. Piao, Y. Wang, and S. Zhu, Calcium Ethoxide as a Solid Base Catalyst for the Transesterification of Soybean Oil to Biodiesel, no. July 2007, p.1313–1317, (2008).

DOI: 10.1021/ef700518h

Google Scholar

[2] R. Rinaldi and F. Sch, Design of solid catalysts for the conversion of biomass, p.610–626, (2009).

Google Scholar

[3] Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu, and C. H. Liang, Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties, J. Cryst. Growth, vol. 234, no. 1, p.171–175, (2002).

DOI: 10.1016/s0022-0248(01)01661-x

Google Scholar

[4] M. A. Sayyadnejad, H. R. Ghaffarian, and M. Saeidi, Removal of hydrogen sulfide by zinc oxide nanoparticles in drilling fluid, vol. 5, no. 4, p.565–569, (2008).

DOI: 10.1007/bf03326054

Google Scholar

[5] N. P. Ariyanto, H. Abdullah, S. Shaari, S. Junaidi, and B. Yuliarto, Preparation and Characterisation of Porous Nanosheets Zinc Oxide Films : Based on Chemical Bath Deposition, vol. 6, no. 6, p.764–768, (2009).

Google Scholar

[6] A. C. Alba-Rubio, J. Santamaría-González, J. M. Mérida-Robles, R. Moreno-Tost, D. Martín-Alonso, A. Jiménez-López, and P. Maireles-Torres, Heterogeneous transesterification processes by using CaO supported on zinc oxide as basic catalysts, Catal. Today, vol. 149, no. 3–4, p.281–287, Jan. (2010).

DOI: 10.1016/j.cattod.2009.06.024

Google Scholar

[7] Y. Liu, J. Zhou, A. Larbot, and M. Persin, Preparation and characterization of nano-zinc oxide, vol. 189, p.379–383, (2007).

DOI: 10.1016/j.jmatprotec.2007.02.007

Google Scholar

[8] M. Sivakumar, A. Towata, K. Yasui, T. Tuziuti, and Y. Iida, Ultrasonic Cavitational Activation: A Simple and Feasible Route for the Direct Conversion of Zinc Acetate to Highly Monodispersed ZnO, Chem. Lett., vol. 35, no. 1, p.60–61, (2006).

DOI: 10.1246/cl.2006.60

Google Scholar

[9] W. -W. Wang and Y. -J. Zhu, Synthesis of Needle-like and Flower-like Zinc Oxide by a Simple Surfactant-free Solution Method, Chem. Lett., vol. 33, no. 8, p.988–989, (2004).

DOI: 10.1246/cl.2004.988

Google Scholar

[10] A. P. A. Oliveira, Controlled Precipitation of Zinc Oxide Particles at Room Temperature, no. 20, p.3202–3207, (2003).

Google Scholar

[11] M. J. Coutts, H. M. Zareie, M. B. Cortie, M. R. Phillips, R. Wuhrer, and A. M. McDonagh, Exploiting zinc oxide re-emission to fabricate periodic arrays., ACS Appl. Mater. Interfaces, vol. 2, no. 6, p.1774–9, Jun. (2010).

DOI: 10.1021/am100284v

Google Scholar

[12] S. Cho, J. -W. Jang, A. Jung, S. -H. Lee, J. Lee, J. S. Lee, and K. -H. Lee, Formation of amorphous zinc citrate spheres and their conversion to crystalline ZnO nanostructures., Langmuir, vol. 27, no. 1, p.371–8, Jan. (2011).

DOI: 10.1021/la103600c

Google Scholar

[13] X. Gao, X. Li, and W. Yu, Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex., J. Phys. Chem. B, vol. 109, no. 3, p.1155–61, Jan. (2005).

DOI: 10.1021/jp046267s

Google Scholar

[14] S. Hirano, K. Masuya, and M. Kuwabara, Multi-Nucleation-Based Formation of Oriented Zinc Oxide Microcrystals and Films in Aqueous Solutions, J. Phys. Chem. B, vol. 108, no. 15, p.4576–4578, Apr. (2004).

DOI: 10.1021/jp038014p

Google Scholar

[15] S. J. Ahmadi, M. Hosseinpour, F. Javadi, and R. Tayebee, Optimization Study on Formation and Decomposition of Zinc Hydroxynitrates to Pure Zinc Oxide Nanoparticles in Supercritical Water, Ind. Eng. Chem. Res., vol. 52, no. 4, p.1448–1454, Jan. (2013).

DOI: 10.1021/ie3026218

Google Scholar

[16] A. Moezzi, A. Mcdonagh, A. Dowd, and M. Cortie, Zinc Hydroxyacetate and Its Transformation to Nanocrystalline Zinc Oxide, (2013).

DOI: 10.1021/ic302328e

Google Scholar

[17] a. Weidenkaff, a. Reller, F. Sibieude, a. Wokaun, and a. Steinfeld, Experimental Investigations on the Crystallization of Zinc by Direct Irradiation of Zinc Oxide in a Solar Furnace, Chem. Mater., vol. 12, no. 8, p.2175–2181, Aug. (2000).

DOI: 10.1021/cm0010295

Google Scholar

[18] E. H. Khan, S. C. Langford, J. T. Dickinson, L. a Boatner, and W. P. Hess, Photoinduced formation of zinc nanoparticles by UV laser irradiation of ZnO., Langmuir, vol. 25, no. 4, p.1930–3, Feb. (2009).

DOI: 10.1021/la804143u

Google Scholar

[19] V. Ischenko, S. Polarz, D. Grote, V. Stavarache, K. Fink, and M. Driess, Zinc Oxide Nanoparticles with Defects, Adv. Funct. Mater., vol. 15, no. 12, p.1945–1954, Dec. (2005).

DOI: 10.1002/adfm.200500087

Google Scholar

[20] P. I. Èacid, D. Duprez, M. Haneda, E. Joubert, J. Me, J. Barbier, N. Bion, M. Daturi, J. Saussey, and J. Lavalleyb, Surface characterization of alumina-supported catalysts prepared by sol – gel method, no. Iii, (2001).

DOI: 10.1039/b009945g

Google Scholar

[21] K. G. Kanade, B. B. Kale, R. C. Aiyer, and B. K. Das, Effect of solvents on the synthesis of nano-size zinc oxide and its properties, vol. 41, p.590–600, (2006).

DOI: 10.1016/j.materresbull.2005.09.002

Google Scholar

[22] I. E. Wachs and K. Routray, Catalysis Science of Bulk Mixed Oxides, (2012).

Google Scholar

[23] P. Li, Z. P. Xu, M. A. Hampton, D. T. Vu, L. Huang, V. Rudolph, and A. V Nguyen, Control Preparation of Zinc Hydroxide Nitrate Nanocrystals and Examination of the Chemical and Structural Stability, (2012).

DOI: 10.1021/jp300045u

Google Scholar

[24] R. Oswald, The Infrared Spectrum and Thermal Analysis of Zinc Hydroxide Nitrate, vol. 255, p.252–255, (1971).

Google Scholar

[25] A. R. Yacob, M. K. A. Amat Mustajab, and N. S. Samadi, Physical and basic strength of prepared nano structured MgO, 2010 Int. Conf. Mech. Electr. Technol., no. Icmet, p.20–23, Sep. (2010).

DOI: 10.1109/icmet.2010.5598484

Google Scholar

[26] A. R. Yacob, M. Khairul, A. Amat, and N. S. Samadi, Calcination Temperature of Nano MgO Effect on Base Transesterification of Palm Oil, p.408–412, (2009).

Google Scholar