Effects of Cr or Mo Compositions on Mechanical Behavior of Fe-Base Bulk Amorphous Alloy

Article Preview

Abstract:

For enhancing wear property of Fe-based bulk amorphous alloys as structural materials, We investigate effects of Cr or Mo compositions on wear and mechanical behaviors of FeCSiBPMo and FeCSiBPAlCr system bulk amorphous alloys which are suction-cast into a copper mold by arc melting in an argon atmosphere using a suction casting technique. X-ray diffraction, differential scanning calorimeter and Scanning electron microscopy were used to observe the microstructure and surface morphologies. Cr-Fe or Mo-Fe substitutions led to a dramatic increase in the glass transition temperature as well as the supercooled liquid region. After the wear test, the mass loss of both BAAs decreased remarkably at higher element. Nanoindentation results indicate that with an increase of the Cr or Mo compositions, the hardness and elastic modulus increased in both BAA samples. These results suggest that wear behaviors of the BAAs corresponded to change in hardness, which means that fracture morphologies of worn surface are strongly dependent on surface hardening with high Cr or Mo content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

136-141

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Yang, C. T. Liu, T. G Nieh, Unified equation for the strength of bulk metallic glasses, App. Phys. Lett. 88 (2006) 221911-3.

Google Scholar

[2] H.S. Chen, Glassy metals, Rep. Phys. 43 (1980) 352-432.

Google Scholar

[3] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka, High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems, Acta Mater. 49 (2001) 2645-2652.

DOI: 10.1016/s1359-6454(01)00181-1

Google Scholar

[4] W.H. Wang, Roles of minor additions in formation and properties of bulk metallic glasses, Prog. Mater. Sci. 52 (2007) 540-596.

DOI: 10.1016/j.pmatsci.2006.07.003

Google Scholar

[5] F. Liu, S. Pang, R. Li, T. Zhang, Ductile Fe-Mo-P-C-B-Si bulk metallic glasses with high saturation magnetization, J. Alloys. Compd. 483 (2009) 613-615.

DOI: 10.1016/j.jallcom.2008.07.164

Google Scholar

[6] H.X. Li, S.L. Wang, S. Yi, Z.B. Jialo, Y. Wu, Z.P. Lu, Glass formation and magnetic properties of Fe-C-Si-B-P-(Cr-Al-Co) bulk metallic glasses fabricated using industrial raw materials, J. Magn. Magn. Mater. 321 (2009) 2833-2837.

DOI: 10.1016/j.jmmm.2009.04.021

Google Scholar

[7] F. Liu, Q. Yang, S. Pang, T. Zhang, Effect of Mo element on the properties of Fe-Mo-P-C-B bulk metallic glasses, J. of Non-Cryst. Solids 355 (2009) 1444-1447.

DOI: 10.1016/j.jnoncrysol.2009.05.048

Google Scholar

[8] Z.B. Jiao, H.X. Li, W.U. Yuan, J.E. Gao, S.L. Wang, S. Yi, Z.P. Lu, Effects of Mo additions on the glass-forming ability and magentic properties of bulk amorphous Fe-C-Si-B-P-Mo alloys, China Phys. Mech. Astron. 53 (2010) 430-434.

DOI: 10.1007/s11433-010-0135-9

Google Scholar

[9] K. Miyoshi, D.H. Buckley, Friction and wear of some ferrous-base metallic glasses, ASLE Transactions 27 (4) (1984) 295-304.

DOI: 10.1080/05698198408981574

Google Scholar

[10] B. Prakash and K. Hiratshka, Sliding wear behavior of some Fe-, Co- and Ni-based metallic glasses during rubbing against bearing steel, Tribol. Lett. 8 (2000) 153-160.

Google Scholar

[11] D. Huang, Ran Li, Lu Huang, V. Ji, T. Zhang, Fretting wear behavior of bulk amorphous steel, Intermetallics 19 (2011) 1385-1389.

DOI: 10.1016/j.intermet.2011.04.014

Google Scholar

[12] D.R. Maddala, R.J. Hebert, Sliding wear behavior of Fe50-xCr15Mo14C15B6Erx(x=0, 1, 2 at%) bulk metallic glass, Wear 294-295 (2012) 246-256.

DOI: 10.1016/j.wear.2012.06.007

Google Scholar

[13] Z.B. Jiao, H.X. Li, J.E. Gao, Y. Wu, Z.P. Lu, Effects of alloying elements on glass formation, mechanical and soft-magnetic properties of Fe-bsed metallic glasses, Intermetallics 19 (2011) 1502-1508.

DOI: 10.1016/j.intermet.2011.05.020

Google Scholar

[14] I. Radu, D.Y. Li, R. Llewellyn, Tribological behavior of Stellite 21 modified with yttrium, Wear 257 (2004) 1154-1166.

DOI: 10.1016/j.wear.2004.07.013

Google Scholar

[15] M. Stoica, J. Eckert, S. Roth, Z.F. Zhang, L. Schultz, W.H. Wang, Mechanical behavior of Fe65. 5Cr4Mo4Ga4P12C5B5. 5, Intermetallics 13 (2005) 764-769.

DOI: 10.1016/j.intermet.2004.12.016

Google Scholar

[16] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[17] R. Vaidyanathan, M. Dao, G. Ravichandran, S. Suresh, Study of mechanical deformation in bulk metallic glass through instrumented indentation, Acta Mater. 49 (2001) 3781-3789.

DOI: 10.1016/s1359-6454(01)00263-4

Google Scholar

[18] E. Martinez, J. Romero, A. Lousa, J. Esteve, Nanoindentation stress-strain curves as a method for thin-film complete mechanical characterization: application to nanometric CrN/Cr multilayer coatings, Appl. Phys. A 77 (2003) 419-426.

DOI: 10.1007/s00339-002-1669-0

Google Scholar