[1]
S. George, Rocket Propulsion Elements 7th ed, John Wiley & Sons, Chichester (2001).
Google Scholar
[2]
Widyastuti, L. Mariani, R. Sunarya and M.A. Putrawan, Al2O3–SiO2 Coating by Flame Spray for Thermal Barrier Coating Application, Applied Mechanics and Materials. 493 (2014) 691-696.
DOI: 10.4028/www.scientific.net/amm.493.691
Google Scholar
[3]
K.W. Widiatmoko, M.A. Putrawan, A.T. Wibisono, and R. Sunarya, The effect of Al2O3-SiO2 mixing ratio as steel coating S45C to the thermal and adhesiveness characteristic with flame spray method for rocket nozzle application, International Conference on Theoretical And Applied Physics. 1555, (2013).
DOI: 10.1063/1.4820997
Google Scholar
[4]
N. P Padture., M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-turbine Engine Applications, Journal of Science. 296 (2002), 280.
DOI: 10.1126/science.1068609
Google Scholar
[5]
W.R. Chen, X. Wu, B.R. Marple, D.R. Nagy, P.C. Patnaik, TGO growth behaviour in TBCs with APS and HVOF bond coats, Surface & Coatings Technology. 202 (2008) 2677–2683.
DOI: 10.1016/j.surfcoat.2007.09.042
Google Scholar
[6]
A. Kobayashi, M. Saremi, A. Afrasiabi, Microstructural analysis of YSZ and YSZ/Al2O3 plasma sprayed thermal barrier coatings after high temperature oxidation, Surface & Coatings Technology. 202 (2008) 3233–3238.
DOI: 10.1016/j.surfcoat.2007.11.029
Google Scholar
[7]
Yanjun Li, Youtao Xie, Liping huang, Xuanyong Liu, Xuebin Zheng, Effect of Physical Vapor Deposited Al2O3 Film on TGO Growth in YSZ/CoNiCrAlY Coatings, Ceramics International 38 (2012) 5113–5121.
DOI: 10.1016/j.ceramint.2012.03.014
Google Scholar
[8]
A.C. Karaoglanli, E. Altuncu, I. Ozdenir, A. Turk, F. Ustel, Structure and durability evaluation of YSZ + Al2O3 composite TBCs with APS and HVOF bond coats under thermal cycling conditions, Surface & Coatings Technology. 205 (2011) 369–373.
DOI: 10.1016/j.surfcoat.2011.04.081
Google Scholar
[9]
J.G. Gao, Y.D. He, and D.R. Wang, Fabrication and high temperature oxidation resistance of ZrO2/Al2O3 micro-laminated coatings on stainless steel, Materials Chemistry and Physics. 123 (2010) 731.
DOI: 10.1016/j.matchemphys.2010.05.047
Google Scholar
[10]
J.L. Zhang and A. Kobayashi, Corrosion Rvesistance of The Al2O3- ZrO2 Composite Thermal Barrier Coatings on Stainless Steel Substrates. Vacuum. 83 (2010) 92.
DOI: 10.1016/j.vacuum.2008.03.090
Google Scholar
[11]
Mohsen Saremi, , Abbas Afrasiabi, Akira Kobayashi, Microstructural Analysis of YSZ and YSZ/Al2O3 Plasma Sprayed Thermal Barrier Coatings After High Temperature Oxidation, Surface & Coatings Technology. 202 (2008) 3233–3238.
DOI: 10.1016/j.surfcoat.2007.11.029
Google Scholar
[12]
C. Zhu, A. Javed, P. Li, F. Yang, G.Y. Liang, P. Xiao, A Study of The Microstructure and Oxidation Behavior of Alumina/Yttria-Stabilized Zirconia (Al2O3/YSZ) Thermal Barrier Coatings, Surface & Coatings Technology. 212 (2012) 214–222.
DOI: 10.1016/j.surfcoat.2012.09.052
Google Scholar
[13]
J. R Davis (Ed. ), Handbook of Thermal Spray, ASM Internasional, (2004).
Google Scholar
[14]
B. Rajasekaran, G. Mauer, dan R. Vaben, Enhanced Characteristics of HVOF sprayed MCrAlY Bond Coats for TBC Applications, ASM International JTTEE5. 20 (2011) 1209–1216.
DOI: 10.1007/s11666-011-9668-3
Google Scholar
[15]
M.G. Hasabdan and Kamran Rashnuei, Comparison of Oxidation Resistance of YSZ and YSZ/Al2O3 Coatings on Ni-Based Superalloy, Ceramics International. 19 (2012) 115-118.
Google Scholar
[16]
C. Ren, Y.D. He, and R. Wang, Al2O3/YSZ Composite Coatings Prepared by A Novel Sol-Gel Process And Their High-Temperature Oxidation Resistance, Oxide Metal Journal Springer. 74 (2010) 275-285.
DOI: 10.1007/s11085-010-9210-x
Google Scholar
[17]
R.D. Jackson, M.P. Taylor, H.E. Evans, X.H. Li, Oxidation Study of an EBPVD MCrAlY Thermal Barrier Coating System, Oxidation of Metals. 76 (2011) 3-4.
DOI: 10.1007/s11085-011-9253-7
Google Scholar