Isobutanol Production and Alcohol Tolerance by Yeast Wild Strain

Article Preview

Abstract:

Recently, there have been global movements toward reducing the use of fossil resources as source of energy due to continuous depletion of petroleum fuel-reserves besides contributing to environmental problems such as greenhouse effect, global warming and climate change. Isobutanol is one of biomass-based fuels that has been recognizes for its potentiality as fuel additive or substitute due to its attractive physical properties. This paper investigates the production of isobutanol and alcohol tolerance by five different types of yeast (Saccharomyces cerevisiae, Kluyveromyces lactis GG799 and Pichia pastoris KM71H, GS115 and X33) in batch fermentation. Based on the result obtained, P. pastoris X33 produced the highest concentration of isobutanol at 65 mg/l followed by P. pastoris GS115, K.lactis GG799, P. pastoris KM71H and S. cerevisiae with concentration of 57 mg/l, 49 mg/l 49 mg/l and 46 mg/l respectively. This result proves that yeast is able to produce isobutanol naturally. S. cerevisiae has been proven as good yeast in alcohol tolerance as it was capable to grow in more than 2% isobutanol and butanol of up to 2%. Among the different alcohols tested for alcohol tolerance, 3-methyl-1-butanol has the highest toxicity towards yeast growth as compared to isobutanol and butanol.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

334-339

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Demirbas, Producing and using bioethanol as an automotive fuel, Energ. Source. Part B 2 (2007) 391–401.

Google Scholar

[2] A. Demirbas, Present and future transportation fuels, Energ. Source. Part A 22 (2008) 147-161.

Google Scholar

[3] C. Weber, A. Farwick, F. Benisch, D. Brat, H. Dietz, T. Subtil, E. Boles, Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels, Appl. Microbiol. Biotechnol. 87 (2010) 1303-1315.

DOI: 10.1007/s00253-010-2707-z

Google Scholar

[4] M. R. Connor, J.C. Liao, Microbial production of advanced transportation fuels in non- natural hosts, Curr. Opin. Biotechnol. 20 (2011) 307-315.

DOI: 10.1016/j.copbio.2009.04.002

Google Scholar

[5] E. A. Savrasova, A. D. Kivero, R. S. Shakulov, N. V. Stoynova, Use of the valine biosynthetic pathway to convert glucose into isobutanol, J. Ind. Microbiol. Biotechnol. 38 (2011) 1287-1294.

DOI: 10.1007/s10295-010-0907-2

Google Scholar

[6] W. - H. Lee, S. O. Seo, Y. - H. Bae, H. Nan, Y. – S. Jin, J. – H. Seo, Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes, Bioprocess Biosyst. Eng. (2012).

DOI: 10.1007/s00449-012-0736-y

Google Scholar

[7] J. R. Dickinson, S. J. Harrison, M. J. Hewlins, An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae, J. Biol. Chem. 273(1998) 25751-25756.

DOI: 10.1074/jbc.273.40.25751

Google Scholar

[8] L. A. Hazelwood, J.M. Daran, A. J. van Maris, J. T. Pronk, J. R. Dickinson, The ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism, Appl. Environ. Microbiol. 74 (2008) 2259-2266.

DOI: 10.1128/aem.02625-07

Google Scholar

[9] X. Chen, K. F. Nielsen, I. Borodina, M. C. Kielland-Brandt, K. Karhumaa, Increase isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism, Biotechnol. Biofuel. 4 (2011) 21.

DOI: 10.1186/1754-6834-4-21

Google Scholar

[10] S. Liu, N. Qureshi, How microbes tolerate ethanol and butanol, New Biotechnol. 26 (2009) 117-121.

DOI: 10.1016/j.nbt.2009.06.984

Google Scholar

[11] E. P. Knoshaug, M. Zhang, Butanol tolerance in a selection of microorganisms, Appl. Biochem. Biotechnol. 153 (2009) 13-20.

DOI: 10.1007/s12010-008-8460-4

Google Scholar

[12] G. L. Miller, Use of dinitrosalicyclic acid reagent for determination of reducing sugar, Anal. Chem. 31(1959) 426-428.

DOI: 10.1021/ac60147a030

Google Scholar

[13] S. Kharkwal, I. A. Karimi, M. W. Chang, D. -Y. Lee. Strain improvement and process development for biobutanol production. Recent Patents Biotechnol. 3 (2009) 202-210.

DOI: 10.2174/187220809789389117

Google Scholar

[14] M. I. Gonzalez-Siso, E. Ramil, M. E. Cerdan, M. A. Freire-Picos, Respirofermentative metabolism in Kluyveromyces lactis: ethanol production and the crabtree effect, Enzyme Microb. Tech. 18 (1996) 585-591.

DOI: 10.1016/0141-0229(95)00151-4

Google Scholar

[15] J. Becker, E. A. Boles, Modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol, Appl. Environ. Microb. (2003) 4144-4150.

DOI: 10.1128/aem.69.7.4144-4150.2003

Google Scholar

[16] Y. L. Lin, H. P. Blaschek, Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth, Appl. Environ. Microb. 45 (1983) 966-973.

DOI: 10.1128/aem.45.3.966-973.1983

Google Scholar

[17] T. C. Ezeji, Bioproduction of butanol from biomass: from genes to bioreactors, Curr. Opin. Biotechnol. 18 (2007) 220-227.

DOI: 10.1016/j.copbio.2007.04.002

Google Scholar