[1]
A. Demirbas, Producing and using bioethanol as an automotive fuel, Energ. Source. Part B 2 (2007) 391–401.
Google Scholar
[2]
A. Demirbas, Present and future transportation fuels, Energ. Source. Part A 22 (2008) 147-161.
Google Scholar
[3]
C. Weber, A. Farwick, F. Benisch, D. Brat, H. Dietz, T. Subtil, E. Boles, Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels, Appl. Microbiol. Biotechnol. 87 (2010) 1303-1315.
DOI: 10.1007/s00253-010-2707-z
Google Scholar
[4]
M. R. Connor, J.C. Liao, Microbial production of advanced transportation fuels in non- natural hosts, Curr. Opin. Biotechnol. 20 (2011) 307-315.
DOI: 10.1016/j.copbio.2009.04.002
Google Scholar
[5]
E. A. Savrasova, A. D. Kivero, R. S. Shakulov, N. V. Stoynova, Use of the valine biosynthetic pathway to convert glucose into isobutanol, J. Ind. Microbiol. Biotechnol. 38 (2011) 1287-1294.
DOI: 10.1007/s10295-010-0907-2
Google Scholar
[6]
W. - H. Lee, S. O. Seo, Y. - H. Bae, H. Nan, Y. – S. Jin, J. – H. Seo, Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes, Bioprocess Biosyst. Eng. (2012).
DOI: 10.1007/s00449-012-0736-y
Google Scholar
[7]
J. R. Dickinson, S. J. Harrison, M. J. Hewlins, An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae, J. Biol. Chem. 273(1998) 25751-25756.
DOI: 10.1074/jbc.273.40.25751
Google Scholar
[8]
L. A. Hazelwood, J.M. Daran, A. J. van Maris, J. T. Pronk, J. R. Dickinson, The ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism, Appl. Environ. Microbiol. 74 (2008) 2259-2266.
DOI: 10.1128/aem.02625-07
Google Scholar
[9]
X. Chen, K. F. Nielsen, I. Borodina, M. C. Kielland-Brandt, K. Karhumaa, Increase isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism, Biotechnol. Biofuel. 4 (2011) 21.
DOI: 10.1186/1754-6834-4-21
Google Scholar
[10]
S. Liu, N. Qureshi, How microbes tolerate ethanol and butanol, New Biotechnol. 26 (2009) 117-121.
DOI: 10.1016/j.nbt.2009.06.984
Google Scholar
[11]
E. P. Knoshaug, M. Zhang, Butanol tolerance in a selection of microorganisms, Appl. Biochem. Biotechnol. 153 (2009) 13-20.
DOI: 10.1007/s12010-008-8460-4
Google Scholar
[12]
G. L. Miller, Use of dinitrosalicyclic acid reagent for determination of reducing sugar, Anal. Chem. 31(1959) 426-428.
DOI: 10.1021/ac60147a030
Google Scholar
[13]
S. Kharkwal, I. A. Karimi, M. W. Chang, D. -Y. Lee. Strain improvement and process development for biobutanol production. Recent Patents Biotechnol. 3 (2009) 202-210.
DOI: 10.2174/187220809789389117
Google Scholar
[14]
M. I. Gonzalez-Siso, E. Ramil, M. E. Cerdan, M. A. Freire-Picos, Respirofermentative metabolism in Kluyveromyces lactis: ethanol production and the crabtree effect, Enzyme Microb. Tech. 18 (1996) 585-591.
DOI: 10.1016/0141-0229(95)00151-4
Google Scholar
[15]
J. Becker, E. A. Boles, Modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol, Appl. Environ. Microb. (2003) 4144-4150.
DOI: 10.1128/aem.69.7.4144-4150.2003
Google Scholar
[16]
Y. L. Lin, H. P. Blaschek, Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth, Appl. Environ. Microb. 45 (1983) 966-973.
DOI: 10.1128/aem.45.3.966-973.1983
Google Scholar
[17]
T. C. Ezeji, Bioproduction of butanol from biomass: from genes to bioreactors, Curr. Opin. Biotechnol. 18 (2007) 220-227.
DOI: 10.1016/j.copbio.2007.04.002
Google Scholar