[1]
D. A. Fadare, T. G. Fadara, O. Y. Akanbi, Effect of Heat Treatment on Mechanical Properties and Microstructure of NST 37-2 Steel, Journal of Minerals and Materials Characterization and Engineering. 10 (3), March (2011).
DOI: 10.4236/jmmce.2011.103020
Google Scholar
[2]
A. Issariyapat, P. Swangsak, Yuttanant Boonyongmaneerat and Patama Visuttipitukul, Effects of Heat Treatment on the Interfacial Structure of Nickel-Aluminum Coating Composites, Advanced Materials Research. 154-155 (2011) 1462-1467.
DOI: 10.4028/www.scientific.net/amr.154-155.1462
Google Scholar
[3]
Suk-Joong L. Kang, Handbook of Sintering: Densification, Grain Growth and Microstructure, Elsevier Butterworth Heineman, (2005).
Google Scholar
[4]
Bakonyi I, Toth-Kada E, Tarnoczi T, Varga L K, Cziraki A, Gerocs I and Fogarassy B., Structure and properties of fine-grained electrodeposited nickel, Nanostructure Material. 3 (2993) 155.
Google Scholar
[5]
G. Fortas, S. Sam, Z. Fekih and N. Gabouze, Electrodeposition of CoNiFe alloys on n-type silicon, Materials Science Forum. 609 (2009) 207-212.
DOI: 10.4028/www.scientific.net/msf.609.207
Google Scholar
[6]
F. Al-Qura'n., Effect of heat treatment on the microstructure and hardness of Chromium-Nickel steel, Contemporary Engineering Sciences. 8 (2009) 355-359.
Google Scholar
[7]
W.L. Liu, S.H. Hsieh, W.J. Chen, Y.C. Hsu, Growth behavior of electroless Ni–Co–P deposits on Fe, Appl. Surf. Sci. 255 (2009) 3880–3883.
DOI: 10.1016/j.apsusc.2008.10.073
Google Scholar
[8]
F. Al Qura'n, Effect of Heat Treatment on the Microstructure and Hardness of Chromium – Nickel steel, Contemporary Engineering Sciences. 2 (8) (2009) 355 – 359.
Google Scholar
[9]
K. M. Hyie, N. A. Resali and W. N. R. Abdullah, Study of Alloys Addition to the Electrodeposited Nanocrystalline Cobalt, Advanced Materials Research, 486 (2012) 108-113.
DOI: 10.4028/www.scientific.net/amr.486.108
Google Scholar
[10]
N. A. Resali, K. M. Hyie, W. N. R. Abdullah, M.A.A. Ghani, and A. Kalam, The Effect of Bath pH on the Phase Formation of Ternary Co-Ni-Fe Nano-coatings, Applied Mechanics and Materials. 391 (2013) 9-13.
DOI: 10.4028/www.scientific.net/amm.391.9
Google Scholar
[11]
P. Tamil Arasu, R. Dhanasekaran, P. Senthil Kumar, N. Srinivasan, Effect of Hardness and Microstructure on En 353 Steel by Heat Treatment, Research Inventy: International Journal Of Engineering And Science. 2 (11) (2013) 01-05.
Google Scholar
[12]
R. K. Bordia and H. Camacho-Montes, Sintering: Fundamentals and Practice, The American Ceramic Society. Published 2012 by John Wiley & Sons, Inc., (2012).
Google Scholar
[13]
L. Slokar, Tanja Matkovic and Prosper Matkovic, Alloying and heat treatment effects on the microstructure and hardness of biomedical titanium alloys, University of Zagreb Faculty of Metallurgy, Aleja narodnih heroja 3, 44103 Sisak, Croatia.
DOI: 10.15255/kui.2017.025
Google Scholar
[14]
P. Kofstad, High Temperature Corrosion, Elsevier Applied Science Publishers LTD, 52 Vanderbilt Avenue, New York, USA, (1998).
Google Scholar
[15]
J. Zhou, W. O. Soboyejo, Compression–compression fatigue of open cell aluminum foams: macro-/micro- mechanisms and the effects of heat treatment, Journal: Materials Science and Engineering A-structural Materials Properties Microstructure and Processing - Mater Sci Eng A-Struct Mater. 369 (1) (2004).
DOI: 10.1016/j.msea.2003.08.009
Google Scholar