In Vitro Corrosion Behaviour of Metallic Dental Materials

Article Preview

Abstract:

Typical applications of metallic dental materials include metal-ceramic restorations, dental implants or orthodontic systems. Due to their contact with human tissues, corrosion resistance is one of the main requirements for dental materials. In the present paper, the corrosion behaviour in Fusayama Meyer artificial saliva solution (pH=5.2) on a selection of four different metallic dental materials (316 L steel, Au based alloy, cp-Ti, Ti6Al4V alloy) currently used in dentistry were investigated. The metallic dental materials have been investigated in terms of electrochemical analysis, chemical composition, morphology before and after corrosion, wettability and roughness. The results showed a hydrophilic behaviour in the case of Au based alloy, cp-Ti and Ti6Al4V alloy, and hydrophobic for 316L stainless steel. Considering the main electrochemical parameters, the cp-Ti alloy exhibited better corrosion resistance in artificial saliva with pH=5.2, followed by Au based alloy, Ti6Al4V alloy and 316L stainless steel. The main objective of the present paper was to evaluate the corrosion behaviour, as in important factor in the selection of metallic materials used in dentistry.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

258-265

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.R. Wang, A. Fenton, Titanium for prosthodontic applications: a review of the literature, Quintessence Int. 27 (6) (1996), 401-408.

Google Scholar

[2] N. Suansuwan, M.V. Swain, Adhesion of porcelain to titanium and titanium alloy, J. Dent. 31 (7) (2003), 509 -518.

DOI: 10.1016/s0300-5712(03)00071-x

Google Scholar

[3] M. Yoda, T. Konno, Y. Takada, K. Iijima, J. Griggs, O. Okuno, Bond strength of binary titanium alloys to porcelain, Biomaterials 22 (2001), 1675-1681.

DOI: 10.1016/s0142-9612(00)00329-x

Google Scholar

[4] H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications. Mater Sci Eng C Mater Biol Appl 26 (2006), 1269–1277.

Google Scholar

[5] C. Mehl, B. Lang, H. Kappert, M. Kern, Microstructure analysis of dental castings used in fixed dental prostheses: A simple method for quality control , Clinical Oral Investigations, 15 ( 2011), 383 – 391.

DOI: 10.1007/s00784-010-0394-x

Google Scholar

[6] H. Kawahara, S. Ochi, K. Tanetani, K. Kato, M. Isogai, H. Mizuno, H. Yamamoto, A. Yamagami, Biological testing of dental materials., J. Jpn. Soc. Dent. Apparatus Mater 4 (1963), 65-75.

Google Scholar

[7] Y. Ucar, W.A. Brantley, W.M. Johnston, M. Iijima, D.S. Han, T. Dasgupta, Microstructure, elemental composition, hardness and crystal structure study of the interface between a noble implant component and cast noble alloys , The Journal of Prosthetic Dentistry, 106(3) (2011).

DOI: 10.1016/s0022-3913(11)60116-9

Google Scholar

[8] W.H. Guo, W.A. Brantley, W.A.T. Clark, P. Monaghan, M.J. Mills, Transmission electron microscopic investigation of a Pd-Ag-In-Sn dental alloy, Biomaterials, 24 (2003), 1705 – 1712.

DOI: 10.1016/s0142-9612(02)00564-1

Google Scholar

[9] J. Buhagiar, H. Dong, Corrosion properties of S-phase layers formed on medical grade austenitic stainless steel , Journal of Materials Science: Materials in Medicine, 23 (2012), 271 – 281.

DOI: 10.1007/s10856-011-4516-z

Google Scholar

[10] J.O.M. Bockris, B.E. Conway, E. Yeager, R.E. White, Electrochemical materials science: comprehensive treatise of electrochemistry, vol. 4. New York: Plenum Press; (1981).

DOI: 10.1002/bbpc.19820860822

Google Scholar

[11] S.P. Kedici, A.A. Aksut, M.A. Kilicarslan, G. Bayramoglu, K. Gokdemir, Corrosion behaviour of dental metals and alloys in different media. J Oral Rehabil 25 (1998), 800–808.

DOI: 10.1046/j.1365-2842.1998.00305.x

Google Scholar

[12] J.C. Wataha, Biocompatibility of dental casting alloys: a review. J Prosthet Dent 83 (2000), 223–234.

Google Scholar

[13] D. Upadhyay, M.A. Panchal, R.S. Dubey, V.K. Srivastava, Corrosion of alloys used in dentistry: a review. Materials Science and Engineering: A, Vol. 432, Iss. 1, (2006), 1-11.

DOI: 10.1016/j.msea.2006.05.003

Google Scholar

[14] C. Manaranche, H. Hornberger, A proposal for the classification of dental alloys according to their resistance to corrosion. Dental materials, 23(11), (2007), 1428-1437.

DOI: 10.1016/j.dental.2006.11.030

Google Scholar

[15] G. Manivasagam, D. Dhinasekaran, A. Rajamanickam, Biomedical Implants: Corrosion and its Prevention-A Review, Recent Patents on Corrosion Science, 2 (2010) (1877-6108/10 2010 Bentham Open), 40-54.

DOI: 10.2174/1877610801002010040

Google Scholar

[16] H.R.A. Bidhendi, M. Pouranvari, Corrosion study of metallic biomaterials in simulated body fluid. Metallurgical & Materials Engineering, Vol. 17, Iss. 1 (2011)., 13-22.

DOI: 10.30544/384

Google Scholar

[17] E.P. Ivanova, B. Kateryna, J.C. Russell, New functional biomaterials for medicine and healthcare, Vol. 67. Woodhead Publishing, Chapter 5–Metallic biomaterials: types and advanced applications (2014), 121–147, (doi: 10. 1533/9781782422662. 121).

DOI: 10.1533/9781782422662.121

Google Scholar

[18] S.W. Dean Jr., W.D. France Jr.,. S.J. Ketcham, Electrochemical Methods, Handbook on Corrosion Testing and Evaluation, W. H. Ailor (ed), , J. Wiley, New York, New York, 1971, 171-215.

Google Scholar

[19] D.J.L. Treacy, R.M. German, Chemical stability of gold dental alloys, Gold Bulletin, Vol. 17, Issue 2 (1984), 46-54.

DOI: 10.1007/bf03214698

Google Scholar

[20] J. Buhagiar, A. Spiteri, M. Sacco, E. Sinagra, H. Dong, Augmentation of crevice corrosion resistance of medical grade 316LVM stainless steel by plasma carburising Corrosion Science, 59 (2012), 169–178.

DOI: 10.1016/j.corsci.2012.02.023

Google Scholar

[21] A.C. Pârâu, S. Zamfir, R.I. Zamfir, G. Coleaşǎ, Comparative studies on the corrosion resistance of Ti6Al4V and NiCr alloys in artificial saliva, UPB Scientific Bulletin, Series B: Chemistry and Materials Science, Vol. 74, Iss. 4 (2012), 237-248.

Google Scholar

[22] O. Addison, A.J. Davenport, R.J. Newport, S. Kalra, M. Monir, J.F.W. Mosselmans, D. Proops, R.A. Martin, Do passive' medical titanium surfaces deteriorate in service in the absence of wear, Journal of The Royal Society Interface, 7 (2012).

DOI: 10.1098/rsif.2012.0438

Google Scholar

[23] C. Eriksson, H. Nygren, K. Ohlson, Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reactions on the surfaces during the first 3 weeks in bone. Biomaterials 25 (2004), 4759–66.

DOI: 10.1016/j.biomaterials.2003.12.006

Google Scholar

[24] B.D. Ratner, A.S. Hoffman, F. Schoen, J. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, Second Edition, ed. Academic Press, (2004).

Google Scholar

[25] L. Linder, A. Carlsson, L. Marsal, L.M. Bjursten, P.I. Branmartk, Clinical Aspects of Osseointegration in Joint Replacement, A Histological Study of Titanium Implants. Journal of Bone and Joint Surgery 70 (1988) 550–555.

DOI: 10.1302/0301-620x.70b4.3403596

Google Scholar

[26] J.C. Souza, S.L. Barbosa, E.A. Ariza, M. Henriques, W. Teughels, P. Ponthiaux, J.P. Celis, L.A. Rocha, How do titanium and Ti6Al4V corrode in fluoridated medium as found in the oral cavity? An in vitro study, Materials Science and Engineering: C, 47(2015).

DOI: 10.1016/j.msec.2014.11.055

Google Scholar

[27] A.S. Guilherme, G.E. Henriques, R.A. Zavanelli, M.F. Mesquita, Surface roughness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols, J Prosthet Dent., 93(4) (2005), 378-385.

DOI: 10.1016/j.prosdent.2005.01.010

Google Scholar