Investigation into Effect of Cutting Conditions on Surface Roughness while Dry Machining Al-11%Si and Al-11%Si-1% Bi Die Casting Alloy

Article Preview

Abstract:

In this study, an experimental investigation was conducted to determine the effects of cutting speeds and feed rates on surface roughness in turning of the Al %11Si and Al-11%Si-1% Bi die cast alloys. Experimental trials carried out on a CNC machine using coated carbide inserts (PVD). Three different cutting speeds, 70, 130 and 250 m/min and three feed rates 0.05, 0.1 and 0.15 mm/rev were used with a 0.15 mm constant depth of cut for all experiments. Additionally scanning electron microscope (SEM) was employed to clarify the different types of silicon morphology. Results revealed that surface roughness increased with increasing feed rate from 0.05 to 0.15 mm/rev and decreased with increasing cutting speed from 70 to 250 m/min. The result showed that workpiece containing Bi had the best surface roughness with lamellar silicon shape in comparison with aluminium-silicon with flake-silicon shape.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

617-621

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. R. E., J. R. Alique, A. Alique, J. Hernández and R. Uribe-Etxebarria: Embedded fuzzy-control system for machining processes: Results of a case study, Computers in Industry 50, no. 3 (2003): 353-366.

DOI: 10.1016/s0166-3615(03)00022-8

Google Scholar

[2] A. A. D. Sarhan, M. Sayuti and M. Hamdi: Reduction of power and lubricant oil consumption in milling process using a new SiO2 nanolubrication system, International Journal of Advanced Manufacturing Technology, November 2012, Vol. 63, Issue 5-8, pp.505-512.

DOI: 10.1007/s00170-012-3940-7

Google Scholar

[3] M. Marani Barzani, E. Zalnezhad, A.A. Sarhan, S. Farahany and S. Ramesh: Fuzzy Logic Based Model for Predicting Surface Roughness of Machined Al-Si-Cu-Fe Die Casting Alloy Using Different Additives-Turning, Measurement,  (2015), pp.150-161.

DOI: 10.1016/j.measurement.2014.10.003

Google Scholar

[4] M. Marani Barzani, N. M. Yusof, A. AkhavanFarid, S. Farahany and A. Davoudinejad: Effects of Cutting Condition on Surface Roughness when Turning Untreated and Sb-Treated Al-11% Si Alloys Using PVD Coated Tools, Applied Mechanics and Materials 315 (2013).

DOI: 10.4028/www.scientific.net/amm.315.413

Google Scholar

[5] R. Pradeep: Cast aluminum-matrix composites for automotive applications, JOM 43, no. 4 (1991), pp.10-15.

DOI: 10.1007/bf03220538

Google Scholar

[6] M. Marani Barzani, S. Farahany, N. Mohd Yusof and A. Ourdjini: The influence of bismuth, antimony and strontium on microstructure, thermal and machinability of aluminium–silicon alloy, J. Mater. Manuf. Process 28 (2013), p.1184–1190.

DOI: 10.1080/10426914.2013.792425

Google Scholar

[7] J. Grum and M. Kisin, Mach. Tools Manuf. (2005), p.1.

Google Scholar

[8] S. Yoshihara and M. Hirano: Abstracts of the 1997 Autumn Meeting of the Japan Inst, Light Metals (1999) p.179–180.

Google Scholar

[9] M. MaraniBarzani, A. A. D. Sarhan, S. Farahany, R. Singh and I. Maher: Machinability of Al-Si-Cu cast alloy containing bismuth and antimony when dry turning using coated carbide insert, Measurement (2014).

DOI: 10.1016/j.measurement.2014.10.030

Google Scholar

[10] M. Marani Barzani, N. MohdYusof, S. Farahany and A. Ourdjini: Effect of Machining Parameters on Cutting Force when Turning Untreated and Sb-Treated Al-11% Si-1. 8% Cu Alloys Using PVD Coated Tools, Applied Mechanics and Materials 234 (2012).

DOI: 10.4028/www.scientific.net/amm.234.74

Google Scholar

[11] A. Davoudinejad, S. Alizadeh Ashrafi and M. Marani Barzani: Investigation into Different Tool Coating performance While Turning Al6061, Advanced Materials Research Vol. 566 (2012), p. p.443.

DOI: 10.4028/www.scientific.net/amr.566.443

Google Scholar

[12] S. Farahany, A. ourdjini and M. H. Idris, The usage of computer-aided cooling curve thermal analysis to optimize eutectic refiner and modifier in Al-Si alloys, Journal of 385 Thermal Analysis and Calorimetry 2012, 109 (1), p.105–111.

DOI: 10.1007/s10973-011-1708-1

Google Scholar

[13] N. Tomac and K. Tonnessen: Machinability of particulate aluminium matrix composites, Annals of the CIRP 41 (1), (1998), p.55–58.

DOI: 10.1016/s0007-8506(07)61151-2

Google Scholar

[14] C. Ibrahim, M. turker and U. Seker: Evaluation of tool wear when machining SiC reinforced Al-2014 alloy matrix composites, Materials and Design 25(2004), p.251–255.

DOI: 10.1016/j.matdes.2003.09.019

Google Scholar

[15] K. Masatsugu, T. Yakou, T. Sasaki and Y. Nagatsuma: Effect of Si content on turning machinability of Al-Si binary alloy castings, Materials transactions 49, no. 3 (2008), pp.587-592.

DOI: 10.2320/matertrans.l-mra2007886

Google Scholar

[16] W. A. Dean: Effect of alloying elements and impurities on properties. In Aluminum; Van Horn, K.R. Ed.; 1967; 395200–226.

Google Scholar