Lifetime and Reliability Assessment of AlN Substrates Used in Harsh Aeronautic Environments Power Switch Modules

Article Preview

Abstract:

This paper presents a Finite Elements Modelling (FEM) based methodology dedicated to the evaluation of the lifetime and the reliability of assemblies involving brittle materials under cyclic loading. It focuses on the particular case of metal bonded Aluminium Nitride (AlN) substrates used in power electronic switch modules. The ceramic fracture criterion was formulated according to the weakest link concept, under Weibull's approach. The material's parameters were determined by running three points bending tests. In order to check the relevancy of the proposed methodology, a non linear thermomechanical Finite Elements Model allowed computing the number of thermal cycles before substrate brittle fracture within a test vehicle, which was then compared to experimental results. Once validated, the methodology was applied to two different configurations of a power switch module, designed for harsh environment aeronautic applications. The corresponding external loading profile was considered to compute and monitor the evolution of the maximal principal stresses within the ceramic substrates whole volumes. Their lifetimes and reliabilities was finally assessed and compared to the applications requirements.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-127

Citation:

Online since:

May 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. I. Jones: The More Electric Aircraft: The Past and The Future?, College of Aeronautics, Cranfield University, (1999).

Google Scholar

[2] R. E. J. Quigley: More electric aircraft, APEC, pp.906-911, March (1993).

Google Scholar

[3] J. A. Weimer: The role of electric machines and drives in the more electric aircraft, International Electric Machines and Drives Conference, vol. 1, pp.11-15, June (2003).

DOI: 10.1109/iemdc.2003.1211236

Google Scholar

[4] O. Langlois, E. Foch, X. Roboam, H. Piquet: De l'avion plus électrique à l'avion tout électrique : état de l'art et prospective sur les réseaux de bord", J3eA, Jour. sur l'enseignement des sciences et technologies de l, info. et des syst., Volume 4, Hors-Série 1(1), (2005).

DOI: 10.1051/bib-j3ea:2005601

Google Scholar

[5] A. Zéanh, O. Dalverny, M. Karama, É. Woirgard, S. Azzopardi, A. Bouzourene, J. Casutt, M. Mermet-Guyennet: Thermomechanical Modelling and Reliability Study of an IGBT Module for an Aeronautical Application, EuroSimE 2008, Freiburg, (2008).

DOI: 10.1109/esime.2008.4525082

Google Scholar

[6] T. Lhommeau, R. Meuret, M. Karama, Technological study of an IGBT module for an aeronautical application in zone engine, 11th European Conference on Power Electronics and Applications (EPE 2005, Dresden), Paper N°895, ISBN: 90-75815-08-5, (2005).

DOI: 10.1109/epe.2005.219735

Google Scholar

[7] A. Zéanh, O. Dalverny, M. Karama, É. Woirgard, S. Azzopardi, A. Bouzourene, J. Casutt, M. Mermet-Guyennet: Reliability of the connections used in IGBT modules, in aeronautical environment, International Journal for Simulation and Multidisciplinary Design Optimization (IJSMDO), Vol 2, pp.123-133, (2008).

DOI: 10.1051/smdo:2008017

Google Scholar

[8] Ciappa, M.: Selected failure mechanisms of modern power modules, Microelectronics reliability, Vol. 42, issues 4-5, pp.653-667, (2002).

DOI: 10.1016/s0026-2714(02)00042-2

Google Scholar

[9] USA Department of defence, MIL-HDBK-217F: Reliability prediction of electronic equipment, (1991).

Google Scholar

[10] DO 160, Environmental condition and test procedures for airborne equipment, RTCA Incorporated, (1997).

Google Scholar

[11] D. Martineau, T. Mazeaud, M. Legros, Ph. Dupuy, C. Levade, G. Vanderschaeve: Characterization of ageing failures on power MOSFET devices by electron and ion microscopies, Microelectronics Reliability, Vol 49, pp.1330-1333, (2009).

DOI: 10.1016/j.microrel.2009.07.011

Google Scholar

[12] W. Engelmaier, Solder Joints in Electronics: Design for Reliability, the Minerals, Metals & Materials Society, Warrendale, PA, pp.9-19, February (1997).

Google Scholar

[13] W. W. Lee, L. T. Nguyen, G. S. Selvaduray, Solder Joint Fatigue Models: Review and Applicability to Chip Scale packages, Microelectronics Reliability, Vol. 40, pp.231-244, (2000).

DOI: 10.1016/s0026-2714(99)00061-x

Google Scholar

[14] A. Micol, A. Zéanh, T. Lhommeau, S. Azzopardi, E. Woirgard, O. Dalverny, M. Karama, An investigation into the reliability of power modules considering baseplate solders thermal fatigue in aeronautical applications, Microelectronics Reliability, Vol 49, pp.1370-1374, (2009).

DOI: 10.1016/j.microrel.2009.06.046

Google Scholar

[15] T. Miyazaki, T. Omata, Electromigration degradation mechanism for pb-free flip-chip micro solder bumps, Microelectronics Reliability, vol 46, pp.1898-1903, (2006).

DOI: 10.1016/j.microrel.2006.07.088

Google Scholar

[16] C. P. Wong, J. M. Segelken, J. W. Balde, Understanding the use of silicone gels for nonhermetic plastic packaging, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Volume 12, Issue 4, pp.421-425, Dec (1989).

DOI: 10.1109/33.48998

Google Scholar

[17] G. Mitic, G. Lefranc, Localization of electrical-insulation and partial-discharge failures of IGBT modules, IEEE Trans. on Indust. Applications, Volume 38, Issue 1, pp.175-180, (2002).

DOI: 10.1109/28.980373

Google Scholar

[18] L. Dupont, Z. Khatir, S. Lefebvre, R. Meuret, B. Parmentier, S. Bontemps: Electrical characterizations and evaluation of thermo-mechanical stresses of a power module dedicated to high temperature applications, European Conference on Power Electronics and Applications, 11-14 Sept. (2005).

DOI: 10.1109/epe.2005.219580

Google Scholar

[19] X. S. Ning, Y. Lin, W. Xu, R. Peng, H. Zhou, K. Chen: Development of a directly bonded aluminium/alumina power electronic substrate, Materials Science and Engineering: B, Volume 99, N°1, pp.479-482, (2003).

DOI: 10.1016/s0921-5107(02)00485-3

Google Scholar

[20] T. Joyeux, M. El Ganaoui, J. Jarrige, J. -P. Lecompte: Réalisation d'un assemblage Cu/AlN améliorant les propriétés thermiques : expériences et simulation, Physical and Chemical News PCN, 3, pp.14-18, (2004).

Google Scholar

[21] KYOCERA: Kyocera Power Module Substrate Si3N4 AMB Substrate, Kyocera Corporation, AMB vers6. 1, (2004).

Google Scholar

[22] E. Gürses, C. Miehe: A computational framework of three-dimensional configurational-forcedriven brittle crack propagation, Comp. Meth. in Applied Mech. and Engineering, Volume 198, Issues 15-16, pp.1413-1428, (2009).

DOI: 10.1016/j.cma.2008.12.028

Google Scholar

[23] J. -M. Haussonne, C. Carry, P. Bowen, J. Barton: Céramiques et verres, principes et techniques d'élaboration, Presse polytechniques et universitairtes romandes, (2005).

Google Scholar

[24] M. F. Ashby, Materials Selection in Mechanical Design, Third Edition, ButterworthHeinemann, (2005).

Google Scholar

[25] J. Lamon, A. G. Evans, Statistical analysis of bending strengths for brittle solids: A multiaxial fracture problem, Journal of the American Ceramic Society, 66(3) 177-182, (1983).

DOI: 10.1111/j.1151-2916.1983.tb10012.x

Google Scholar

[26] P. Stanley, H. Fessler, & A. D. Sevill, An engineer's approach to the prediction of failure probability of brittle components, Proc. Brit. Ceram. Soc., 22 453-87, (1973).

Google Scholar

[27] L. J. M. G. Dortmans & G. De With, Weakest-link Failure Predictions for Ceramics Using Finite Element Post-processing, Nether. Jour. of the European Ceram. Soc. 6 369-374, (1990).

DOI: 10.1016/0955-2219(90)90004-y

Google Scholar

[28] Curamik® Electronics gmbh, Design Rules für curamik® DCB-Substrate, www. curamik. de.

Google Scholar

[29] J. Lemaître, J. -L. Chaboche, Mécanique des Matériaux solides, Edition Dunod, (1985).

Google Scholar

[30] http: /aluminium. matter. org. uk.

Google Scholar

[31] A. D. Freed, Thermoviscoplastic Model With Application to Copper, NASA Technical Paper 2845. (1988).

Google Scholar

[32] Alstom Internal report: Finite Element Analysis of manufacturing process for Cu-Al2O3-Cu insulating laminates for GTO Assemblies, ERC/WP/91. 0492.

Google Scholar

[33] Alstom Internal report: The effect of geometrical variations on the probability of PostManufacturing cracking of Cu-Al2O3-Cu laminates for traction applications, ERC/R/91. 0575.

Google Scholar

[34] M. Mermet-Guyennet, New structure of power integrated module, Proceedings of the CIPS, Naples, Italy, June 7-9, (2006).

Google Scholar