[1]
M. Popović, E. Romhanji, Stress corrosion cracking susceptibility of Al–Mg alloy sheet with high Mg content, Journal of Material Processing Technology[J], 2002, (125): 275–280.
DOI: 10.1016/s0924-0136(02)00398-9
Google Scholar
[2]
A Alil, M Popović, T Radetić. Influence of annealing temperature on the baking response and corrosion properties of an Al–4. 6 wt% Mg alloy with 0. 54 wt% Cu. Journal of Alloys and Compounds[J], 2015, (625): 76-84.
DOI: 10.1016/j.jallcom.2014.11.063
Google Scholar
[3]
W Yang, D. S Yan, L. J Rong. The separation of recrystallization and precipitation processes in a cold-rolled Al–Mg–Sc solid solution. Scripta Materialia[J], 2013, (68): 587–590.
DOI: 10.1016/j.scriptamat.2012.12.009
Google Scholar
[4]
Y. A Filatov, V. I Yelagin, V. V Zakharov. New Al–Mg–Sc alloys. Materials Science and Engineering A[J], 2000, (280): 97–101.
DOI: 10.1016/s0921-5093(99)00673-5
Google Scholar
[5]
Z.M. Yin, Q.L. Pan, Y.H. Zhang, Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys, Materials Science and Engineering A[J], 2000, (280): 151-155.
DOI: 10.1016/s0921-5093(99)00682-6
Google Scholar
[6]
C.B. Fuller, D.N. Seidman, D.C. Dunand, Mechanical properties of Al(Sc, Zr) alloys at ambient and elevated temperatures, Acta Materialia[J], 2003, (51): 4803-3814.
DOI: 10.1016/s1359-6454(03)00320-3
Google Scholar
[7]
Z.X. Liu, Z.J. Li, M.X. Wang, Effect of complex alloying of Sc, Zr and Ti on the microstructure and mechanical properties of Al–5Mg alloys, Materials Science and Engineering A[J], 2008, (483–484): 120–122.
DOI: 10.1016/j.msea.2006.09.166
Google Scholar
[8]
Z.R. Nie, T.N. Jin, J.X. Zou, J.B. Fu, J.J. Yang, T.Y. Zuo, Transactions of Nonferrous Metals Society of China[J], 2003, (13): 509-513.
Google Scholar
[9]
Z.R. Nie, J.B. Fu, J.X. Zou, T.N. Jin, J.J. Yang, G.F. Xu, H.Q. Ruan, T.Y. Zuo, in: J.F. Nie, A.J. Morton, B.C. Muddle (Eds. ), Aluminium Alloys—Their Physical and Mechanical Properties, vol. Institute of Materials Engineering, Australasia, 2004, (28): 197.
Google Scholar
[10]
Z.R. Nie, T.N. Jin, J.B. Fu, G.F. Xu, J.J. Yang, J.X. Zhou, T.Y. Zuo, Material Science Forum[J], 2002, (396–402): 1731-1736.
Google Scholar
[11]
S.P. Wen, K.Y. Gao, Y. Li, H. Huang, Z.R. Nie. Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy. Scripta Materialia[J], 2011, (65)7: 592-595.
DOI: 10.1016/j.scriptamat.2011.06.033
Google Scholar
[12]
S.P. Wen, Z.B. Xing, H. Huang, The effect of erbium on the microstructure and mechanical properties of Al–Mg–Mn–Zr alloy, Materials Science and Engineering A[J], 2009, (516): 42–49.
DOI: 10.1016/j.msea.2009.02.045
Google Scholar
[13]
Z.H. Gao, H.Y. Li, Y.Q. Lai, Effects of minor Zr and Er on microstructure and mechanical properties of pure aluminum, Materials Science and Engineering A[J], 2013, (580): 92–98.
DOI: 10.1016/j.msea.2013.05.035
Google Scholar
[14]
Y. Zhang, K.Y. Gao, S.P. Wen, The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy, Journal of Alloys and Compounds[J], 2014, (610): 27-34.
DOI: 10.1016/j.jallcom.2014.04.093
Google Scholar
[15]
C. Watanabe, R. Monzen, K. Tazaki. Effects of Al3Sc particle size and precipitate-free zones on fatigue behavior and dislocation structure of an aged Al-Mg-Sc alloy. International Journal of Fatigue[J]. 2008, 30(4): 635-641.
DOI: 10.1016/j.ijfatigue.2007.05.010
Google Scholar
[16]
D.X. Yang, X.Y. Li, D.Y. He, Effect of minor Er and Zr on microstructure and mechanical properties of Al–Mg–Mn alloy (5083) welded joints, Materials Science and Engineering A[J], 2013, (561): 226–231.
DOI: 10.1016/j.msea.2012.11.002
Google Scholar