The Progress in Cloning, Expression and Purification of Cholinesterase in Pichia pastoris: One Kind of Biomaterial for the Detection of Residual Insecticide Contamination

Article Preview

Abstract:

Cholinesterase serves as a key enzyme of the cholinergic system, which could be one kind of promising biomaterial to assay OP and CB residues. However, cholinesterase purified from tissues or blood is both time and cost intensive. In this essay, different methods via biotechnology to get this biomaterial in Pichia pastoris is summarized, including cholinesterase gene cloning and expression vector construction, construction of genetic modified yeast, screening high yield transformant, purification from supernatant and activity analysis.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1120-1121)

Pages:

847-852

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J Massoulie, L Pezzementi, S Bon. Molecular and cellular biology of cholinesterase, J. Prog Neurobiol. 41(1993) 31–91.

Google Scholar

[2] J Massoulie, S Bon. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates, J. Annu Rev Neurosci. 5(1982)557–106.

DOI: 10.1146/annurev.ne.05.030182.000421

Google Scholar

[3] M Schumacher, S Camp, Y Maulet. Primary structure of Torpedo California acetylcholinesterase deduce from cDNA sequence, J. Nature. 319(1986)407–409.

DOI: 10.1038/319407a0

Google Scholar

[4] Y. Li, S Camp, T. L Rachinsky. Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression, J. Biol Chem. 266(1991)23083–23090.

DOI: 10.1016/s0021-9258(18)54466-5

Google Scholar

[5] T. L Rachinsk, S. Camp, Y Li. Molecular cloning of mouse acetylcholinesterase: tissue distribution of alternatively spliced mRNA species, J. Neuron. 5(1990)317–327.

DOI: 10.1016/0896-6273(90)90168-f

Google Scholar

[6] W. R Randall, M Rimer, N. R Gough. Cloning and analysis of chicken acetylcholinesterase transcripts from muscle and brain, J. Biochim Biophys Acta. 218(1994)453–456.

DOI: 10.1016/0167-4781(94)90204-6

Google Scholar

[7] I Mendelson, C Kronman, N Ariel. Bovine acetylcholinesterase: cloning, expression and characterization, J. Biochem J. 334(1998)251–259.

DOI: 10.1042/bj3340251

Google Scholar

[8] H. L Fernandez, R. D Moreno. Tetrameric (G4) acetylcholinesterase: structure, localization, and physiological regulation, J. Neurochem. 66(1996)1335–1346.

DOI: 10.1046/j.1471-4159.1996.66041335.x

Google Scholar

[9] E Krejci, S Thomine, N Boschetti. The mammalian gene of acetylcholinesterase-associated collagen, J. J Biol Chem. 272(1997)22840–22847.

DOI: 10.1074/jbc.272.36.22840

Google Scholar

[10] D. H Small, S Michaelson, G Sberna. Non-classical actions of cholinesterases: role in cellular differentiation, tumorigenesis and Alzheimer's disease, J. Neurochem Int. 28(1996)453–483.

DOI: 10.1016/0197-0186(95)00099-2

Google Scholar

[11] M. A Sortino, G Frasca, M Chisari. Novel neuronal targets for the acetylcholinesterase inhibitor donepezil, J. Neuropharmacology. 47(2004)1198–1204.

DOI: 10.1016/j.neuropharm.2004.08.011

Google Scholar

[12] M Recanatini, P Valenti. Acetylcholinesterase inhibitors as a starting point towards improved Alzheimer's disease therapeutics, J. Curr Pharm Des. 10(2004)3157–3166.

DOI: 10.2174/1381612043383313

Google Scholar

[13] Y Boublik, P Saint-Aguet, A Lougarre. Acetylcholinesterase engineering for detection of insecticide residues, J. Protein Eng. 15(2002)43–50.

DOI: 10.1093/protein/15.1.43

Google Scholar

[14] J Pritchard, K Law, A Vakurov. Sonochemically fabricated enzyme microelectrode arrays for the environmental monitoring of pesticides, J. Biosens Bioelectron. 20(2004)765–72.

DOI: 10.1016/j.bios.2004.06.008

Google Scholar

[15] A Vakurov, C. E Simpson, C. L Daly. Acetylcholinesterase-based biosensor electrodes for organophosphate pesticide detection. I. Modification of carbon surface for immobilization of acetylcholinesterase, J. Biosens Bioelectron. 20(2004)1118–1125.

DOI: 10.1016/s0956-5663(04)00295-7

Google Scholar

[16] M Xingyuan, T Jianhua, W Dongzhi. High-level secretion and purification of recombinant acetylcholinesterase from human cerebral tissue in P. pastoris and identification by chromogenic reaction, J. Appl Microbiol Biotechnol. 72(2006)316-322.

DOI: 10.1007/s00253-005-0260-y

Google Scholar

[17] S Ryohei, M Toru, H Norio. Cloning and expression of carp acetylcholinesterase gene in Pichia pastoris and characterization of the recombinant enzyme, J. Protein Expression and Purification. 64(2009)205-212.

DOI: 10.1016/j.pep.2008.12.003

Google Scholar

[18] Z XiaoXia, X Yuxian. Expression and characterization of recombinant Locusta migratoria manilensis acetylcholinesterase 1 in Pichia pastoris, J. Protein Expression and Purification. 77(2011)62-67.

DOI: 10.1016/j.pep.2010.11.017

Google Scholar

[19] A. B Wu, H. D Chen, Z. Z Tang. Synthsis of Drosophila melanogaster acetylcholinesterase gene using yeast preferred codons and its expression in Pichia pastoris, J. Chemico-Biological Interaction. 175(2008)403-405.

DOI: 10.1016/j.cbi.2008.04.020

Google Scholar

[20] T Furong, W Ligang, W Jinbin. Enhanced pesticide sensitivity of novel housefly actylcholinesterases: a new tool for the detection of residual pesticide contamination, J. Bioprocess Biosyst Eng. 34(2011)305-314.

DOI: 10.1007/s00449-010-0472-0

Google Scholar

[21] S. H Ayman, M. S Angela, R. S Matilde. Determinants of substrate specificity of a second non-neuronal secreted acetylcholinesterase from the parasitic nematode Nippostrongylus brasiliensis, J. Eur. J. Biochem. 267(2000)2276-2282.

DOI: 10.1046/j.1432-1327.2000.01232.x

Google Scholar

[22] T Vedvick, R. G Buckholz, M Engel. High- level sretion of biologically active aprotinin from the yeast Pichia pastoris, J. Journal of Industrial Microbiology. 7(1991)197-201.

DOI: 10.1007/bf01575883

Google Scholar

[23] M Xiaohong, H Yanling, Z Hongliang. Cloning of pectin methylesterase inhibitor from kiwi fruit and its high expresfion in Pichiapastoris, J.Enzyme and Microbial Technology. 40(2007)1001-1005.

DOI: 10.1016/j.enzmictec.2006.07.044

Google Scholar

[24] L Xijin, X Wentao, H Kunlun. Cloning, expression and characterization of recombinant elastase from Pseudomonas aeruginosa in Picha pastoris, J. Protein Expression and Purification. 63(2009)69-74.

DOI: 10.1016/j.pep.2007.12.011

Google Scholar

[25] S Abad, K Kitz, H Schreiner. Real Time PCR based determination of gene copy numbers in Pichia pastoris, J. Biotecnology Journal. 1(2011)413-421.

DOI: 10.1002/biot.200900233

Google Scholar

[26] F Villatte F, T. T Bachman, A. S Hussein. Acetylcholinesterase assay for rapid expression screening in liquid and solid media, J. Biotechniques. 30(2001)81–86.

DOI: 10.2144/01301st04

Google Scholar

[27] S Estrada-Mondaca, D Fournier. Stabilisation of recombinant Drosophila acetylcholinesterase, J. Protein Expr Purification. 12(1998)166-168.

Google Scholar

[28] J Heim, C Schmidt-Danert, H Atomi. Functional expression of a mammalian acetylcholinesterase in Pichia pastoris: Comparison to acetylcholinesterase, expressed and reconstituted from Escherichia coli, J. Biochim Biophys Acta. 1396(1998)306-319.

DOI: 10.1016/s0167-4781(97)00196-6

Google Scholar

[29] J. L Sussman, M Harel, F Frolow. Purification and crystallization of a dimeric form of acetylcholinesterase from Torpedo californica subsequent to solubilization with phosphatidylinositol-specific phospholipase C, J. J Mol Biol. 203(1998)821–823.

DOI: 10.1016/0022-2836(88)90213-6

Google Scholar

[30] F Villatte, V Marcel, S Estrada-Mondaca. Engineering sensitive acetylcholinesterase for detection of organophosphate and carbamate insecticides, J. Biosens Bioelectron. 13(1998)157–164.

DOI: 10.1016/s0956-5663(97)00108-5

Google Scholar

[31] F Villatte, P Ziliani, V Marcel. A high number of mutations in insect acetylcholinesterase may provide insecticide resistance, J. Pesticide Biochem Physiol(2000)67, 95–102.

DOI: 10.1006/pest.2000.2478

Google Scholar

[32] A. S Hussein, M. R Chacon, A. M Smith. Cloning, expression and properties of a nonneuronal secreted acetylcholinesterase from the parasitic nematode Nippostrongylus brasiliensis, J. J Biol Chem. 274(1999)9312–9319.

DOI: 10.1074/jbc.274.14.9312

Google Scholar

[33] A. S Hussein, A. M Smith, M. R Chacon. Determinants of substrate specificity of a second non-neuronal secreted acetylcholinesterase from the parasitic nematode Nippostrongylus brasiliensis, J. Eur J Biochem. 267(2000)2276–2282.

DOI: 10.1046/j.1432-1327.2000.01232.x

Google Scholar

[34] J Massoulie, S Bon. Affinity chromatography of acetylcholinesterase. The importance of hydrophobic interactions, J. Eur JBiochem. 68(1976)531–539.

DOI: 10.1111/j.1432-1033.1976.tb10841.x

Google Scholar

[35] J. S Ralston, A. R Main, B. F Kilpatrick. Use of procainamide gels in the purification of human and horse serum cholinesterase, J. Biochem J. 211(1983)243–250.

DOI: 10.1042/bj2110243

Google Scholar

[36] G. L Ellman, K. D Courtney, V Andres. A new and rapid colorimetric determination of acetylcholinesterase activity, J. Biochem Pharmacol. 7(1961)88–95.

DOI: 10.1016/0006-2952(61)90145-9

Google Scholar