Anodic Oxidation of Titanium in Acetic Acid for Biomedical Application

Article Preview

Abstract:

Anodic oxidation (AO) is an electrochemical method which used to change the bio-inert (smooth) to bio-active (rough) layer of titanium (Ti) surface. The aim of this study is to evaluate the effect of anodic oxidation on characteristics of Ti in acetic acid (C2H4O2) under various conditions. Anodised Ti were prepared using anodic oxidation method on the surface of Ti films in acetic acid by varying the applied voltage (50 – 350 V) and current density (25, 50 and 75 mA.cm-2) for 10 min at room temperature. The anodised Ti films were characterised using digital camera, field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM). The results show that, roughness of the Ti films was increased with increment of applied voltage and current density. The anodised effects during anodic oxidation process change the surface roughness (porosity) of the Ti surface which meets the biomaterial need as implant material. This characteristic is needed to promote the formation of apatite when soak in simulated body fluid (SBF).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

455-459

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Santos, N.K. Kuromoto, and G.A. Soares, Mechanical properties of titania films used as biomaterials, Mater. Chem. & Phys. (2006).

Google Scholar

[2] P. Kern, P. Schwaller, and J. Michler, Electrolytic deposition of titania films as interference coatings on biomedical implants: microstructure, chemistry and nano-mechanical properties, Thin Solid Films, 494 (2006) 279 – 286.

DOI: 10.1016/j.tsf.2005.09.068

Google Scholar

[3] H. Ishizawa and M. Ogino, Formation and characterization of anodic titanium oxide films containing Ca and P, Biomed. Mater. R., Vol 29 (1995) 65 – 72.

DOI: 10.1002/jbm.820290110

Google Scholar

[4] X. Liu, P.K. Chu, and C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci, & Eng. R., Vol 47 (2004), p.74.

Google Scholar

[5] M. Keshmiri and T. Troczynski, Apatite Formation on TiO2 Anatase Microspheres, Non-Crystalline Solids, 324 (2003), 289-294.

DOI: 10.1016/s0022-3093(03)00363-6

Google Scholar

[6] F.J. Gil, A. Padros, J.M. Manero, C. Aparicio, M. Nilsson, and J. A Planell, Growth of bioactive surfaces on titanium and its alloys for orthopaedic and dental implants, Mater. Sci. & Eng. C, 22 (2002) 53 – 60.

DOI: 10.1016/s0928-4931(01)00389-7

Google Scholar

[7] H.J. Oh, J.H. Lee, Y. Jeong, Y.J. Kim, and C.S. Chi, Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method, Surf. & Coating Tech., 198 (2005) 247 -252.

DOI: 10.1016/j.surfcoat.2004.10.029

Google Scholar

[8] X. Bokhimi, A. Morales, M. Agilar, J.A. Toledo-Antonia, and F. Pedraza, Local order in titania polymorphs, Int. J. of Hydrogen Energy, Vol 26 (2001), p.1279.

DOI: 10.1016/s0360-3199(01)00063-5

Google Scholar

[9] Y. Han, S.H. Hong, and K.W. Xu, Porous nanocrystalline titania films by plasma electrolytic oxidation, Surf. & Coating Tech., 154 (2002) 314 – 318.

DOI: 10.1016/s0257-8972(02)00036-1

Google Scholar

[10] X. Cui, H.M. Kim, M. Kawashita, L. Wang, T. Xiong, T. Kokubo, and T. Nakamura, Preparation of bioactive titania films on titanium metal via anodic oxidation, Dental Materials, 25 (2009), 80-86.

DOI: 10.1016/j.dental.2008.04.012

Google Scholar

[11] H.Z. Abdullah, P. Koshy, and C.C. Sorrell, Anodic oxidation of titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA), Key Eng. Mater, Vols 594-595 (2014), p.275.

DOI: 10.4028/www.scientific.net/kem.594-595.275

Google Scholar

[12] B. Yang, M. Uchida, H.M. Kim, X. Zhang, and T. Kokubo, Preparation of bioactive titanium via anodic oxidation treatment, Biomater., 25 (2004) 1003 – 1010.

DOI: 10.1016/s0142-9612(03)00626-4

Google Scholar

[13] M.P. Casaletto, G.M. Ingo, S. Kaciulis, G. Mattogno,L. Pandolfi, and G. Cavia, Surface studies of in vitro biocompatibility of titanium oxide coatings, Applied Surf. Sci., 172 (2001) 167-177.

DOI: 10.1016/s0169-4332(00)00844-8

Google Scholar

[14] T. Kasuga, H. Kondo, and M. Nogami, Apatite formation on TiO2 in simulated body fluid, J. of Cryst. Growth, 235 (2002) 235 – 240.

DOI: 10.1016/s0022-0248(01)01782-1

Google Scholar

[15] H.Z. Abdullah, L.T. Chuan, M.I. Idris, and C.C. Sorrell, Effect of Current Density on Anodised Titanium in Mixture β-Glycerophosphate (β-GP) and Calcium Acetate (CA), Adv. Mater. Res., In press.

DOI: 10.4028/www.scientific.net/amr.1087.212

Google Scholar

[16] L.T. Chuan, M.I. Idris, H.Z. Abdullah, and C.C. Sorrell, Effect of Electrolyte Concentration on Anodised Titanium in Mixture β-Glycerophosphate (β-GP) and Calcium Acetate (CA), Adv. Mater. Res., In press.

DOI: 10.4028/www.scientific.net/amr.1087.116

Google Scholar

[17] M.A. Selimin, N.H.M. Idrus, and H.Z. Abdullah, Anodic Oxidation of Titanium for Biomedical Application, Adv. Mater. Res., In press.

Google Scholar