[1]
R.A. Harding, The production, properties and automotive applications of austempered ductile iron. Kovove Materialy, 45, (2007), 1-16.
Google Scholar
[2]
A. Rimmer, ADI solutions aid vehicle design, The Foundry Trade Journal, March, (2004), 54-56.
Google Scholar
[3]
M. A. Yescas, H.K.D.H. Bhadeshia, Model for the maximum fraction of retained austenite in austempered ductile cast iron, Materials Science and Engineering A, 333, (2002), 60-66.
DOI: 10.1016/s0921-5093(01)01840-8
Google Scholar
[4]
M.A. Yescas, H.K.D.H. Bhadeshia, D.J. MacKay, Estimation of the amount of retained austenite in austempered ductile iron using neural networks, Materials Science and Engineering A, 311, (2001), 162-173.
DOI: 10.1016/s0921-5093(01)00913-3
Google Scholar
[5]
R.A. Armstrong, F. Eperjesi, G. Gilmartin, The application of analysis of variance (ANOVA) to different experimental designs in optometry, Ophthalmic and Physiological Optics, 22 (2002), 248–256.
DOI: 10.1046/j.1475-1313.2002.00020.x
Google Scholar
[6]
W. D. Taloi, The optimization of the metallurgical processes – Applications in metallurgy, E.D.P. Publishing, Bucharest, (1987).
Google Scholar
[7]
M. Dojcinovic, O. Eric, D. Rajnovic, L. Sidjanin, S. Balos, Effect of austempering temperature on cavitation behaviour of unalloyed ADI material, Materials Characterization, 82 (2013), 66-72.
DOI: 10.1016/j.matchar.2013.05.005
Google Scholar
[8]
Y.C. Lim, Z. Zaidal, M.Z. Husein, W.T. Tan, The effect of heat treatment on phase transformation, morphology and photoelectrochemical response of short TiO2 nanotubes, Digest Journal of Nanomaterials and Biostructures, 8 (1), (2013), 167-176.
Google Scholar