Metal Removal from Spent Catalyst Using Microbacterium liquefaciens in Solid Culture

Article Preview

Abstract:

The purpose of the present study was to investigate the ability of Microbacterium liquefaciens strain MNSH2-PHGII-2, isolated from a Mexican silver mine, for removing Ni and V from spent catalyst at 80% (w/v) pulp density in a glass-column system at laboratory conditions. Firstly, microbial culture was adapted to spent catalyst at 0.1% (w/v) in liquid culture then, it was assayed by its ability to remove Ni and V from a spent catalyst in a glass-column system. Spent catalyst was packed at 80% (w/v) pulp density and inoculated at 20% (3x108 CFU/ml); air was supplied at 80 ml/min and then incubated at 30°C during 14 days. Parameters such as microbial growth, pH, Ni and V residual concentrations, in catalyst, were determined at days 7 and 14. The result showed that Microbacterium liquefaciens strain MNSH2-PHGII-2 in the glass-column system was able to remove 1007.4 mg/kg of Ni while V was removed at an extent of 5360.5 mg/kg. Microbial removal for other metals in catalyst was non-significant, that indicated the specificity of Microbacterium liquefaciens to remove Ni and V.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

564-567

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Petróleos Mexicanos (2002). Annual Report (2001).

Google Scholar

[2] C. Garcia, L.V. Mercado, S. Nuñez S. (1996), Universidad Autónoma Metropolitana.

Google Scholar

[3] F. Alonso, S. Ramirez, J. Ancheyta, M. Marvil, M. (2008). Rev. Int. Contam. Ambient., Vol. pp.55-69.

Google Scholar

[4] W.T. Rodríguez-Luna. (2009). MSc. Thesis, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Querétaro, Instituto Politécnico Nacional, México.

DOI: 10.3926/oms.404.7

Google Scholar

[5] N.G. Rojas-Avelizapa (2010). Technical Report. Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada-Unidad Querétaro, Instituto Politécnico Nacional, México.

DOI: 10.3926/oms.404.7

Google Scholar

[6] M. Gómez-Ramírez, L.A. Montero-Álvarez, A. Tobón-Avilés, G. Fierros-Romero, N.G. Rojas-Avelizapa. (2015). J. Environ. Sci. Health A. Vol. 50, pp.602-610.

DOI: 10.1080/10934529.2015.994953

Google Scholar

[7] M. Gómez-Ramírez, L. García-Martínez, G. Fierros-Romero, N.G. Rojas-Avelizapa. (2014). Proceedings, Biohidrometallurgy´14, Falmouth, Cornwall, UK (2014).

Google Scholar

[8] R. Shirdam, A. Khanafari, A. Tabatabaee. (2006). Iranian J. Biotechnol. Vol. 4, pp.180-187.

Google Scholar

[9] Norma Mexicana (2011). NMX-AA-008-SCFI-(2011).

Google Scholar

[10] M. Pedrique N. (2008). Catedra de microbiología, Facultad de Farmacia UCV.

Google Scholar

[11] A. Bharadwaj, Y.P. Ting (2013). Bioresour. Technol. Vol. 130, pp.673-680.

Google Scholar

[12] D. Mishra, D.J. Kim, D.E. Ralph, J.G. Ahn, Y.H. Rhee (2007). Hydrometallurgy, Vol. 88, p.202–209.

Google Scholar

[13] R.M. Gholami, S.M. Borghei, S.M. Mousavi. (2011). Hydrometallurgy. Vol 106, pp.26-31.

Google Scholar

[14] A. K. Ting. (2005). J. Biotechnology. Vol. 116, pp.159-170.

Google Scholar