Growth of TiO2 Thin Films by Atomic Layer Deposition (ALD)

Article Preview

Abstract:

Ceramic oxide thin films are an important material, with applications in many areas of science and technology. Titanium oxide (TiO2) is also a well-known and important material for applications such as gas sensors [1], photocatalysis materials [3], and electrochemicals [1], due to its self-cleaning [2], good corrosion resistance and biocompatibility. Atomic Layer Deposition (ALD) is a nanotechnology tool that is used for the deposition of nanostructured thin films. The unique advantage of ALD is the self-limiting film growth mechanism, which offers attractive properties, simple and accurate film thickness control, sharp interfaces, uniformity over large areas, excellent conformality, good reproducibility, a multilayer processing capability, and high quality films at low temperatures [3, 4]. TiO2 thin films were grown using TTIP (Titanium isopropoxide) ALD on silicon wafers, glass slides, and stainless steel plates in order to study the effect of substrates on the growth of TiO2. In order to achieve the desired advantages of using TTIP, a series of experiments were performed to study the growth mechanism of TiO2 thin films using TTIP and H2O by ALD.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

352-356

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Quinonez, W. Vallejo, G. Gordillo, Structural, optical and electrochemical properties of TiO2 thin films grown by APCVD method, Applied Surface Science. 256 (2010) 4065-4071.

DOI: 10.1016/j.apsusc.2010.02.020

Google Scholar

[2] C.J.W. Ng, H. Gao, T.T.Y. Tan, Atomic layer deposition of TiO2 nanostructures for self-cleaning applications, Nanotechnology. 19 (2008) 445604.

DOI: 10.1088/0957-4484/19/44/445604

Google Scholar

[3] M. Ritala, M. Leskela, Atomic layer epitaxy- a valuable tool for nanotechnology, Nanotechnology. 10 (1999) 19-24.

DOI: 10.1088/0957-4484/10/1/005

Google Scholar

[4] H. Kim, H.B.R. Lee, W.J. Maeng, Applications of atomic layer deposition to nanofabrication and emerging nanodevices, Thin Solid Films. 517 (2009) 2563-2580.

DOI: 10.1016/j.tsf.2008.09.007

Google Scholar

[5] D.M. King, Quantum confinement in amorphous TiO2 films studied via atomic layer deposition, Nanotechnology. 19 (2008) 445401.

DOI: 10.1088/0957-4484/19/44/445401

Google Scholar

[6] C.X. Shan, X. Hou, and K.L. Choy, Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition, Surface and Coatings Technology. 202 (2008) 2399-2402.

DOI: 10.1016/j.surfcoat.2007.08.066

Google Scholar

[7] C.X. Shan, Improvement in corrosion resistance of CrN coated stainless steel by conformal TiO2 deposition, Surface and Coatings Technology. 202 (2008) 2147-2151.

DOI: 10.1016/j.surfcoat.2007.08.078

Google Scholar

[8] M.W. Ribarsky, Handbooks of optical constants of solids, Academic Press, Altanta Gorgia, (1985).

Google Scholar

[9] Z. Yanqing, Hydrothermal preparation and characterization of brookite-type TiO2 nanocrystallites, Journal of Materials Science Letters. 19 (2000) 1445-1448.

Google Scholar

[10] A. Wisitsoraat, Gas-sensing characterization of TiO2-ZnO based thin film, 2006 IEEE Sensors. 1-3 (2006) 964-967.

DOI: 10.1109/icsens.2007.355784

Google Scholar

[11] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 1 (2000) 1-21.

DOI: 10.1016/s1389-5567(00)00002-2

Google Scholar

[12] A.P. Alekhin, Structural properties of the titanium dioxide thin films grown by atomic layer deposition at various numbers of reaction cycles, Applied Surface Science. 257 (2010) 186-191.

DOI: 10.1016/j.apsusc.2010.06.061

Google Scholar

[13] J. Aarik, Titanium isopropoxide as a precursor for atomic layer deposition: characterization of titanium dioxide growth process, Applied Surface Science. 161(2000) 385-395.

DOI: 10.1016/s0169-4332(00)00274-9

Google Scholar

[14] A. Rahtu, M. Ritala, Reaction mechanism studies on titanium isopropoxide-water atomic layer deposition process, Chemical Vapor Deposition. 8 (2002) 21-28.

DOI: 10.1002/1521-3862(20020116)8:1<21::aid-cvde21>3.0.co;2-0

Google Scholar

[15] J. Aarik, Influence of structure development on atomic layer deposition of TiO2 thin films, Applied Surface Science. 181 (2001) 339-348.

DOI: 10.1016/s0169-4332(01)00430-5

Google Scholar

[16] M. Ritala, M. Leskela, E. Rauhala, Atomic layer exitaxy growth of titanium dioxide thin films from titanium ethoxide, Chemistry of Materials. 6 (1994) 556-561.

DOI: 10.1021/cm00040a035

Google Scholar

[17] C. Ohara, Synthesis and characterization of brookite/anatase complex thin film, Applied Surface Science. 254 (2008) 6619-6622.

DOI: 10.1016/j.apsusc.2008.04.030

Google Scholar

[18] K. Porkodi, S.D. Arokiamary, Synthesis and spectroscopic characterization of nanostructured anatase titania: A photocatalyst, Materials Characterization. 58 (2007) 495-503.

DOI: 10.1016/j.matchar.2006.04.019

Google Scholar

[19] C. Edusi, G. Sankar, I.P. Parkin, The effect of solvent on the phase of titanium dioxide deposited by aerosol-assisted CVD, Chemical Vapor Deposition. 18 (2012) 126-132.

DOI: 10.1002/cvde.201106961

Google Scholar

[20] K. Kukli, Atomic layer deposition of titanium oxide from TiI4 and H2O2, Chemical Vapor Deposition. 6 (2000) 303-310.

DOI: 10.1002/1521-3862(200011)6:6<303::aid-cvde303>3.0.co;2-j

Google Scholar

[21] A. Niilisk, Structural study of TiO2 thin films by micro-Raman spectroscopy, Central European Journal of Physics. 4 (2006) 105-116.

Google Scholar

[22] W. F. Zhang, Raman scattering study on anatase TiO2 nanocrystals, Journal of Physics D: Applied Physics. 33 (2000) 912.

Google Scholar