Thermophysical Properties of Alumina-Ethanol-Water Based Nanofluids

Article Preview

Abstract:

Addition of nanosized particles as an additive to the fluid in order to improve the properties of fluid has gained much attention in recent era. Limited studies are reported in literature for the preparation and estimation of thermophysical properties of nanofluids based on binary mixture of liquids. Thermophysical properties of nanofluids including effective density and effective viscosity of alumina nanoparticles based nanofluids are measured at a temperature range of 20-60°C. The study is carried out in binary mixture of ethanol and water at different concentrations. Alumina nanoparticles of 50 nm are used at different particle loading i.e. 0-0.3 wt% in different proportions of ethanol and water. The analysis of measured experimental values indicates that the addition of nanoparticles in different concentrations has significant effect on the effective density and the effective viscosity of fluids. The predicted values are estimated from correlation coefficients as a function of temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

496-500

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Naphon, D. Thongkum, P. Assadamongkol, Heat pipe efficiency enhancement with refrigerant-nanoparticles mixtures, Energy Conver Manage. 50 (2009) 772-776.

DOI: 10.1016/j.enconman.2008.09.045

Google Scholar

[2] S.N. Khadzhiev, K.M. Kadiev, G.P. Yampolskaya, M.K. Kadieva, Trends in the synthesis of metal oxide nanoparticles through reverse microemulsions in hydrocarbon media, Adv. Colloid Interface Sci. 132 (2013) 197-198.

DOI: 10.1016/j.cis.2013.05.003

Google Scholar

[3] S.U. Ilyas, R. Pendyala, N. Marneni, Preparation, sedimentation and agglomeration of nanofluids, Chem. Eng. Technol. 37 (2014) 2011-(2021).

DOI: 10.1002/ceat.201400268

Google Scholar

[4] S.U. Ilyas, R. Pendyala, N. Marneni, Settling characteristics of alumina nanoparticles in ethanol-water mixtures, Appl. Mech. Mater. 372 (2013) 143-148.

DOI: 10.4028/www.scientific.net/amm.372.143

Google Scholar

[5] D. Kwek, A. Crivoi, F. Duan, Effects of temperature and particle size on the thermal property measurements of Al2O3-Water Nanofluids, J. Chem. Eng. Data. 55 (2010) 5690-5695.

DOI: 10.1021/je1006407

Google Scholar

[6] S.U. Ilyas, R. Pendyala, A. Shuib, N. Marneni, A review on the viscous and thermal transport properties of nanofluids, Adv. Mater. Res. 917 (2014) 18-27.

DOI: 10.4028/www.scientific.net/amr.917.18

Google Scholar

[7] C.J. Ho, L.C. Wei, Z.W. Li, An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/ water nanofluid, Appl. Therm. Eng. 30 (2010) 96-103.

DOI: 10.1016/j.applthermaleng.2009.07.003

Google Scholar

[8] M.J. Pastoriza-Gallego, C. Casanova, J.L. Legido, M.M. Piñeiro, CuO in water nanofluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity, Fluid Phase Equilib. 300 (2011) 188-196.

DOI: 10.1016/j.fluid.2010.10.015

Google Scholar

[9] P.K. Namburu, D.K. Das, K.M. Tanguturi, R.S. Vajjha, Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties, Int. J. Therm. Sci. 48 (2009) 290-302.

DOI: 10.1016/j.ijthermalsci.2008.01.001

Google Scholar

[10] A.E.H. Masuda, K. Teramae, N. Hishinuma, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei. 4 (1993) 227-233.

DOI: 10.2963/jjtp.7.227

Google Scholar

[11] J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett. 78 (2001) 718-720.

DOI: 10.1063/1.1341218

Google Scholar

[12] X.W. Wang, X.F. Xu, S.U.S. Choi, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys and Heat Transfer. 13 (4) (1999) 474-480.

DOI: 10.2514/2.6486

Google Scholar

[13] S.U. Ilyas, R. Pendyala, N. Marneni, Dispersion behaviour and agglomeration effects of zinc oxide nanoparticles in ethanol–water mixtures, Mater. Res. Innov. 18 (2014) S6-179-S6-183.

DOI: 10.1179/1432891714z.000000000953

Google Scholar

[14] N. Masoumi, N. Sohrabi, A. Behzadmehr, A new model for calculating the effective viscosity of nanofluids. J. Phys. D: Appl. Phys. 42 (2009) 055501.

DOI: 10.1088/0022-3727/42/5/055501

Google Scholar

[15] C.T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, H. Angue Mintsa, Temperature and particle-size dependent viscosity data for water-based nanofluids - Hysteresis phenomenon, Int. J. Heat Fluid Fl. 28 (2007) 1492-1506.

DOI: 10.1016/j.ijheatfluidflow.2007.02.004

Google Scholar