Analyzing Modular Platform Potential for Complex Product Portfolios of Manufacturing Companies

Article Preview

Abstract:

The increasing demand for product individualization and the challenges of globalization force manufacturing companies to expand their product range while keeping internal expenses low. To tackle the dichotomy between economies of scale and economies of scope, companies make use of modular product platforms and carry-over-parts. To improve the modular platform performance, it is crucial to define its structure in the early planning phase. In vertical direction, the modular platform structure defines considered technical solutions, whereas in horizontal direction, it is characterized by the products that use these solutions. When introducing or adapting modular product platforms of complex product portfolios, companies often make upfront decisions regarding the modular platform’s structure based on expert intuition. This mainly results from a lack of time, organizational restrictions and missing systematic approaches. The sheer number of product data associated with the products in the portfolio as well as the often missing transparency regarding existing components and interfaces force decision makers to decide in an intuitive approach. However, this hinders an optimal design of modular platforms and reduces the optimal performance exploitation. In order to increase modular platform performance and hence the company´s profitability, a holistic approach prior to the actual platform design process is required to determine the optimal modular platform structure for a complex product portfolio. The basis for this methodology is a generic descriptive model, which helps to describe current and planned products of a serial manufacturer’s portfolio in a structured way. The introduced methodology determines optimal modular platform scopes through systematic identification of anchor products by aid of Data Mining.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

521-528

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Schuh, G., Schöning, S., Lenders, M., Kubosch, A., Lean Innovation: Idealtypisches Management von Innovationsprozessen in der Investitionsgüterindustrie. In: Ronald Gleich (Eds. ): Innovationsmanagement in der Investitionsgüterindustrie treffsicher voranbringen. Konzepte und Lösungen. Frankfurt am Main: VDMA-Verl., 2006, p.186.

Google Scholar

[2] De Weck, O. L., Suh, E. S. and Chang, D., Product Family and Platform Portfolio Optimization. Freeman, D.F. 2011. A product family design methodology employing pattern recognition, (2003).

DOI: 10.1115/detc2003/dac-48721

Google Scholar

[3] Jiao, J. R., Simpson, T. W. and Siddique, Z., Product Family Design and Platform-based Product Development: A State-of-the-art Review, (2007).

Google Scholar

[4] Simpson, T. W., Jiao, J. R., Siddique, Z., and Hölttä-Otto, K., Advances in Product Family and Product Platform Design: Methods & Applications, (2014).

DOI: 10.1007/978-1-4614-7937-6

Google Scholar

[5] Simpson, T. W., Maier, J. R. A. and Mistree, F., A Product Platform Concept Exploration Method for Product Family Design, In: ASME Design Engineering Technical Conferences, Las Vegas, (1999).

DOI: 10.1115/detc99/dtm-8761

Google Scholar

[6] Tucker, C., Kim, H., Barker, D. and Zhang, Y., A Relief attribute weighting and X-means clustering metholody for top-down product family optimization. In: Engineering Optimization, 42(7) (2010) 593-616.

DOI: 10.1080/03052150903353328

Google Scholar

[7] Moon, S. K., Kumara, S. R. T. and Simpson, T. W., Data Mining and Fuzzy Clustering to Support Product Family Design. In: Proceedings of DETC 06, 2006 ASME Design Engineering Technical Conferences, Philadelphia, 2006, pp.241-246.

DOI: 10.1115/detc2006-99287

Google Scholar

[8] Freeman, D., Lim, D., Garcia, E. and Mavris, D., Identification of Product Family Platforms Using Pattern Recognition. In: ASME Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Washington, 2011, pp.1027-1039.

DOI: 10.1115/detc2011-47472

Google Scholar

[9] Ben-Arieh, D., Easton, T., Choubey, A. M., Solving the multiple platforms configuration problem. In: International journal of production research 47(7) (2009) 1969–(1988).

DOI: 10.1080/00207540701561520

Google Scholar

[10] Seepersad, C. C., Hernandez, G. and Allen, J. K., A Quantitative Approach to Determining Product Platform Extent, (2000).

DOI: 10.1115/detc2000/dac-14288

Google Scholar

[11] Van den Broeke, M., Boute, R. & Samii, B., Evaluation of product-platform decisions based on total supply chain costs, (2015).

DOI: 10.1080/00207543.2015.1034329

Google Scholar

[12] Kissel, M., Mustererkennung in komplexen Produktportfolios. München: Universitäts-bibliothek der TU München, (2014).

Google Scholar

[13] Jonas, H., Gebhardt, N., Krause, D., Towards a Strategic Development of Modular Product Programs. In: International Design Conference - Design 2012, Dubrovnik, 2012, pp.959-968.

Google Scholar

[14] Zhang, L. L., A literature review on multitype platform and framework for future research. In: Int. J. Production Economics 168 (2015) 1-125.

Google Scholar

[15] M. Riesener, Ähnlichkeitsbasierte Produktkonfiguration im Maschinenbau, Ph.D. dissertation, RWTH Aachen, Aachen, Germany, (2015).

Google Scholar

[16] Albers, S., Optimale Auswahl von Produkteigenschaften. In: Albers, S., Herrmann, A. (Eds. ): Handbuch Produktmanagement: Gabler Verlag, 2007, pp.363-394.

DOI: 10.1007/978-3-8349-9517-9_16

Google Scholar

[17] G. Schuh, S. Rudolf, C. Ortlieb, Portfolio structuring – Determining the optimal number and scope of product platforms, in ISPIM Innovation Summit, Brisbane, Australia, (2015).

Google Scholar

[18] Feldhusen, J., Grote, K. -H., Pahl/Beitz Konstruktionslehre, 8. Aufl., Berlin, Heidelberg: Springer-Verl, (2013).

Google Scholar

[19] Ehrlenspiel, K., Integrierte Produktentwicklung. München: Carl Hanser Verlag, fourth ed., (2009).

Google Scholar

[20] Gaag, A., Entwicklung einer Ontologie zur funktionsorientierten Lösungssuche in der Produktentwicklung, München: Dr. Hut, (2010).

Google Scholar

[21] Ester, M., Sander, J., Knowledge Discovery in Databases - Techniken und Anwendungen, Berlin: Springer-Verl., (2000).

Google Scholar

[22] Fayyad, U. M. Piatetsky-Shapiro, G. Smyth, P., Advances in Knowledge Discovery and Data Mining. In: AI Magazine. 17, Nr. 3 (1996) 37–54.

Google Scholar