Extended Constitutive Model for FRP-Confined Concrete in Circular Sections

Article Preview

Abstract:

This study presents an extended finite element (FE) model based on concrete damage-plasticity approach for fiber-reinforced polymer (FRP)-confined normal-strength and high-strength concrete (NSC and HSC). The proposed model is based on Lubliner’s model and it accurately incorporates the effects of confinement level, concrete strength, and nonlinear dilation behavior. Failure surface and flow rule were established using an up-to-date database. In order to validate the extended damage-plasticity model, finite element (FE) model is developed for specimens under a wide range of confining pressures. The results indicate that the model predictions of FRP-confined NSC and HSC are in good agreement with the experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

349-354

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wu, Y. -F., and Jiang, J. -F. (2013). Effective strain of FRP for confined circular concrete columns., Composite Structures, 95, 479–491.

DOI: 10.1016/j.compstruct.2012.08.021

Google Scholar

[2] Lim, J.C., and Ozbakkaloglu, T. (2015). Influence of Concrete Age on Stress-Strain Behavior of FRP-Confined Normal- and High-Strength Concrete., Construction and Building Materials, 82, 61-70.

DOI: 10.1016/j.conbuildmat.2015.02.020

Google Scholar

[3] Vincent, T., and Ozbakkaloglu, T. (2015). Compressive behavior of prestressed high-strength concrete-filled Aramid FRP tube columns: Experimental observations., Journal of Composites for Construction, ASCE, 19(6), 04015003.

DOI: 10.1061/(asce)cc.1943-5614.0000556

Google Scholar

[4] Vincent, T. and T. Ozbakkaloglu (2015). "Influence of shrinkage on compressive behavior of concrete-filled FRP tubes: An experimental study on interface gap effect, Construction and Building Materials, 75, 144-156.

DOI: 10.1016/j.conbuildmat.2014.10.038

Google Scholar

[5] Vincent, T. and T. Ozbakkaloglu, Influence of slenderness on stress-strain behavior of concrete-filled FRP tubes: an experimental study, ASCE, J. Compos. Constr. 10. 1061/(ASCE)CC. 1943-5614. 0000489, 04014029 (2015).

DOI: 10.1061/(asce)cc.1943-5614.0000489

Google Scholar

[6] Ozbakkaloglu, T. (2015). A novel FRP-dual grade concrete-steel composite column system., Thin-Walled Strucutres, 96, 295-306.

DOI: 10.1016/j.tws.2015.08.016

Google Scholar

[7] Xie, T. and Ozbakkaloglu, T. (2015). Behavior of steel fiber-reinforced high-strength concrete-filled FRP tube columns under axial compression., Engineering Structures, 90, 158-171.

DOI: 10.1016/j.engstruct.2015.02.020

Google Scholar

[8] Ozbakkaloglu, T., and Xie, T. (2016). Geopolymer Concrete-Filled FRP Tubes: Behavior of Circular and Square Columns under Axial Compression., Composites Part B, 96, 215-230.

DOI: 10.1016/j.compositesb.2016.04.013

Google Scholar

[9] Ozbakkaloglu, T., Lim, J. C., and Vincent, T. (2013). FRP-confined concrete in circular sections: Review and assessment of stress–strain models., Engineering Structures, 49, 1068–1088.

DOI: 10.1016/j.engstruct.2012.06.010

Google Scholar

[10] Yu, T., Teng, J. G., Wong, Y. L., and Dong, S. L. (2010). Finite element modeling of confined concrete-I: Drucker-Prager type plasticity model., Engineering Structures, 32(3), 665-679.

DOI: 10.1016/j.engstruct.2009.11.014

Google Scholar

[11] Youssf, O., ElGawady, M. A., Mills, J. E., and Ma, X. (2014). Finite element modelling and dilation of FRP-confined concrete columns., Engineering Structures, 79, 70–85.

DOI: 10.1016/j.engstruct.2014.07.045

Google Scholar

[12] Jiang, J. F., and Wu, Y. F. (2012). Identification of material parameters for Drucker-Prager plasticity model for FRP confined circular concrete columns., International Journal of Solids and Structures, 49(3-4), 445-456.

DOI: 10.1016/j.ijsolstr.2011.10.002

Google Scholar

[13] Lim, J. C., and Ozbakkaloglu, T. (2014).

Google Scholar

[14] ABAQUS (2012). ABAQUS Analysis User's Manual., version 6. 12, Dassault Systèmes Simulia Corp., Providence, RI, USA.

Google Scholar

[15] Ozbakkaloglu, T., and Lim, J. C. (2013). Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model., Composites Part B, 55, 607-634.

DOI: 10.1016/j.compositesb.2013.07.025

Google Scholar

[16] Lim, J. C., and Ozbakkaloglu, T. (2014). Confinement model for FRP-confined high-strength concrete., Journal of Composites for Construction, ASCE, 18(4), 04013058.

DOI: 10.1061/(asce)cc.1943-5614.0000376

Google Scholar

[17] Lim, J.C., and Ozbakkaloglu, T. (2015). Hoop Strains in FRP-Confined Concrete: Experimental Observations., Materials and Structures. 48(9): 2839-2854.

DOI: 10.1617/s11527-014-0358-8

Google Scholar

[18] Lim, J. C., and Ozbakkaloglu, T. (2014). Influence of silica fume on stress-strain behavior of FRP-confined HSC., Construction and Building Materials, 63, 11-24.

DOI: 10.1016/j.conbuildmat.2014.03.044

Google Scholar

[19] Lubarda, V. A., Kracjinvovic, D., and Mastilovic, S. (1994). Damage model for brittle elastic solids with unequal tensile and compressive strength., Engineering Fracture Mechanics, 49, 681-697.

DOI: 10.1016/0013-7944(94)90033-7

Google Scholar

[20] Lubliner, J., Oliver, J., Oller, S., and Onate, E. (1989). A plastic-damage model for concrete., International Journal of Solids and Structures, 25(3), 299-326.

DOI: 10.1016/0020-7683(89)90050-4

Google Scholar

[21] Lee, J., and Fenves, G. L. (1998). Plastic-damage model for cyclic loading of concrete structures., Journal of Engineering Mechanics, 124(8), 892-900.

DOI: 10.1061/(asce)0733-9399(1998)124:8(892)

Google Scholar

[22] Ozbakkaloglu, T., Gholampour, A., and Lim, J. C. (2016). Damage-plasticity model for FRP-confined normal-strength and high-strength concrete., Journal of Composites for Construction, 10. 1061/(ASCE)CC. 1943-5614. 0000712, 04016053.

DOI: 10.1061/(asce)cc.1943-5614.0000712

Google Scholar

[23] Lim, J. C., Ozbakkaloglu, T., Gholampour, A., Bennett, T., and Sadeghi, R. (2016).

Google Scholar

[24] Lim, J. C., and Ozbakkaloglu, T. (2014). Stress-strain model for normal- and light-weight concretes under uniaxial and triaxial compression., Construction and Building Materials, 71, 492-509.

DOI: 10.1016/j.conbuildmat.2014.08.050

Google Scholar

[25] Mirmiran, A., Shahawy, M., Samaan, M., El Echary, H., Mastrapa, J. C., and Pico, O. (1998). Effect of column parameters on FRP-confined concrete., Journal of Composites for Construction, 2(4), 175-185.

DOI: 10.1061/(asce)1090-0268(1998)2:4(175)

Google Scholar

[26] Ozbakkaloglu, T., and Vincent, T. (2014). Axial compressive behavior of circular high-strength concrete-filled FRP tubes., Journal of Composites for Construction, ASCE, 18(2), 04013037.

DOI: 10.1061/(asce)cc.1943-5614.0000410

Google Scholar