Bayesian Updating of Aleatory Uncertainties in Heterogeneous Materials

Article Preview

Abstract:

Advances in meta-modelling and increasing computational capacity of modern computerspermitted many researches to focus on parameter identification in probabilistic setting. Increasinglypopular Bayesian inference allows to estimate model parameters together with corresponding epistemicuncertainties from indirect experimental measurements. However in case of a heterogeneousmaterial model, the identification procedure has to be able to quantify the aleatory uncertainties capturingthe variability of the material properties. Parameter identification of a heterogeneous materialmodel can be formulated as a search for probabilistic description of its parameters providing the distributionof the model response corresponding to the distribution of the observed data, i.e. a stochasticinversion problem. By prescribing a specific type of probability distribution to the model parameterswith corresponding uncertain moments, the task changes to the identification of these so-calledhyperparameters of the distribution which can be inferred in the Bayesian way.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

136-141

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Mantovan, E. Todini, Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology, Journal of Hydrology, 330 (2006) 368-381.

DOI: 10.1016/j.jhydrol.2006.04.046

Google Scholar

[2] K. Beven, P. Smith, J. Freer, Comment on Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology, by Pietro Mantovan and Ezio Todini, Journal of Hydrology, 338 (2007) 315-318.

DOI: 10.1016/j.jhydrol.2007.02.023

Google Scholar

[3] W. L. Oberkampf, S. M. DeLand, B. M. Rutherford, K. V. Diegert, K. F. Alvin, Error and uncertainty in modeling and simulation, Reliability Engineering & System Safety, 75 (2002) 333-357.

DOI: 10.1016/s0951-8320(01)00120-x

Google Scholar

[4] J. R. Fonseca, M. I. Friswell, J. E. Mottershead, A. W. Lees, Uncertainty identification by the maximum likelihood method, Journal of Sound and Vibration, 288 (2005) 587-599.

DOI: 10.1016/j.jsv.2005.07.006

Google Scholar

[5] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Rubin, Bayesian data analysis, second ed., Chapman & Hall/CRC, (2009).

Google Scholar

[6] A. Tarantola, Inverse problem theory and methods for model parameter estimation, Philadelphia, PA: Society for Industrial and Applied Mathematics, (2005).

Google Scholar

[7] Y. M. Marzouk, H. N. Najm, L. A. Rahn, Stochastic spectral methods for efficient Bayesian solution of inverse problems, Journal of Computational Physics, 224 (2007) 560-586.

DOI: 10.1016/j.jcp.2006.10.010

Google Scholar

[8] B. V. Rosić et al., Parameter Identification in a Probabilistic Setting, Engineering Structures, 50 (2013) 179-196.

Google Scholar

[9] T. A. El Moselhy, Y. M. Marzouk, Bayesian inference with optimal maps, Journal of Computational Physics, 231 (2012) 7815-7850.

DOI: 10.1016/j.jcp.2012.07.022

Google Scholar

[10] J. B. Nagel, B. Sudret, A unified framework for multilevel uncertainty quantification in Bayesian inverse problems, Probabilistic Engineering Mechanics, 43 (2016) 68-84.

DOI: 10.1016/j.probengmech.2015.09.007

Google Scholar

[11] I. Behmanesh, B. Moaveni, G. Lombaert, C. Papadimitriou, Hierarchical Bayesian model updating for structural identification, Mechanical Systems and Signal Processing, 64 (2015) 360-376.

DOI: 10.1016/j.ymssp.2015.03.026

Google Scholar

[12] D. Draper, J. S. Hodges, C. L. Mallows, D. Pregibon, Exchangeability and data analysis, Journal of the Royal Statistical Society. Series A (Statistics in Society), 1993, pp.9-37.

DOI: 10.2307/2982858

Google Scholar

[13] G. C. Ballesteros, P. Angelikopoulos, C. Papadimitriou, P. Koumoutsakos, Bayesian hierarchical models for uncertainty quantification in structural dynamics, in: Vulnerability, Uncertainty, and Risk, American Society of Civil Engineers (ASCE), 2014, pp.1615-1624.

DOI: 10.1061/9780784413609.162

Google Scholar

[14] J. S. Rosenthal, Optimal Proposal Distributions and Adaptive MCMC in Handbook of Markov Chain Monte Carlo, Chapman & Hall/CRC, 2011, pp.93-140.

DOI: 10.1201/b10905-5

Google Scholar