[1]
H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science 281 (1998) 951-956.
DOI: 10.1126/science.281.5379.951
Google Scholar
[2]
G. Hitoki, A Ishikawa, T. Takata, J.N. Kondo, M.Hara, K.Domen, Ta3N5 as a novel visible light-driven photocatalyst (λ< 600 nm). Chemistry Letters 31 (2002) 736-737.
DOI: 10.1246/cl.2002.736
Google Scholar
[3]
N. Lee, H. Taeghwan, Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chemical Society Reviews 41 (2012) 2575-2589.
DOI: 10.1039/c1cs15248c
Google Scholar
[4]
S. Krehula, M. Ristic, I. Mitar, C. Wu, X. Li, L. Jiang, Synthesis and Properties of Ni-doped Goethite and Ni-doped Hematite Nanorods. Croatica Chemica Acta 91. (2018) 389-402.
DOI: 10.5562/cca3402
Google Scholar
[5]
S. Musić, S. Popović, M. Ristić, X-ray diffraction and 57 Fe Mössbauer spectra of the system Fe 2 O 3− Ga 2 O3. Journal of Materials Science 24 (1989) 2722-2726.
DOI: 10.1007/bf02385616
Google Scholar
[6]
J.M.G. Amores, V.S. Escribano, E.F. Lopez, M. Saidi, Solid state chemistry of Fe–Ga mixed oxides. Journal of Materials Chemistry 11 (2001) 3234-3240.
Google Scholar
[7]
H.H. Stadelmaier, Metal-rich metal-metalloid phases., Developments in the structural chemistry of alloy phases. Springer, Boston, MA, 1969. 141-180.
DOI: 10.1007/978-1-4899-5564-7_6
Google Scholar
[8]
A. Houben, J. Burghaus, R. Dronskowski . The ternary nitrides GaFe3N and AlFe3N: Improved synthesis and magnetic properties. Chemistry of Materials 21. (2009) 4332-4338.
DOI: 10.1021/cm901864z
Google Scholar
[9]
S. Bhattacharyya, Iron nitride family at reduced dimensions: a review of their synthesis protocols and structural and magnetic properties. The Journal of Physical Chemistry C 119. (2015) 1601-1622.
DOI: 10.1021/jp510606z
Google Scholar
[10]
S. Yamamoto, S. Kikkawa, Y. Masubuchi, T. Takeda, M. Okube, Preparation of gallium oxynitride in the presence of iron through a citrate route. Materials Research Bulletin 44 (2009) 1656-1659.
DOI: 10.1016/j.materresbull.2009.04.008
Google Scholar
[11]
R. Okada, K. Katagiri, Y. Masubuchi, K. Inumaru. Preparation of LaTiO2N Using Hydrothermally Synthesized La2Ti2O7 as a Precursor and Urea as a Nitriding Agent. European Journal of Inorganic Chemistry 2019 (2019) 1257-1264.
DOI: 10.1002/ejic.201801526
Google Scholar
[12]
S. Delsarte, V. Peltier, Y. Laurent, P. Grange. X-ray photoelectron study of new mixed oxynitrides AlGaPON,. Journal of the European Ceramic Society 18.9 (1998): 1287-1291.
DOI: 10.1016/s0955-2219(98)00055-7
Google Scholar
[13]
M. Olea, M. Florea, I .Sack, R.P. Silvy, E.M. Gaigneaux, G.B. Marin, P. Grange Evidence for the participation of lattice nitrogen from vanadium aluminum oxynitrides in propane ammoxidation. Journal of Catalysis 232. (2005) 152-160.
DOI: 10.1016/j.jcat.2005.02.020
Google Scholar
[14]
S. Alconchel, F. Sapiña, D. Beltrán. A new approach to the synthesis of molybdenum bimetallic nitrides and oxynitrides. Journal of Materials Chemistry 9 (1999) 749-755.
DOI: 10.1039/a808697d
Google Scholar
[15]
Y. Qiu, G. Lian, Metal-urea complex—a precursor to metal nitrides. Journal of the American Ceramic Society 87 (2004) 352-357.
DOI: 10.1111/j.1551-2916.2004.00352.x
Google Scholar
[16]
C. Giordano, C. Erpen, W. Yao, B. Milke, M. Antonietti, Metal nitride and metal carbide nanoparticles by a soft urea pathway. Chemistry of Materials 21. (2009) 5136-5144.
DOI: 10.1021/cm9018953
Google Scholar
[17]
Y. Qiu, G. Lian, Novel synthesis of nanocrystalline gallium nitride powder from gallium (III)-urea complex. Chemistry letters 32 (2003) 774-775.
DOI: 10.1246/cl.2003.774
Google Scholar
[18]
M. Grafouté, C. Petitjean, C. Rousselot, J.F. Pierson, J.M. Greneche, Chemical environment of iron atoms in iron oxynitride films synthesized by reactive magnetron sputtering. Scripta materialia 56 (2007) 153-156.
DOI: 10.1016/j.scriptamat.2006.09.012
Google Scholar
[19]
S. Mukherjee, V. Ranjan, R. Gupta, A. Garg . Compositional dependence of structural parameters polyhedral distortion and magnetic properties of gallium ferrite." Solid state communications 152 (2012) 1181-1185.
DOI: 10.1016/j.ssc.2012.03.010
Google Scholar