Deposition of Titania Nanoparticles on the Surface of Acid Treated Multiwalled Carbon Nanotubes

Article Preview

Abstract:

Titanium dioxide (Titania, TiO2) nanoparticles have been deposited on the surface of acid treated multi-walled carbon nanotubes (MWCNTs) by simple chemical route. The resultant TiO2/MWCNTs composites were characterized by different techniques. The oxidation of MWCNTs and presence of titania nanoparticles on the surface of MWCNTs is confirmed by transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. TEM image shows the size of titania nanoparticles are around 5 nm. Raman spectroscopy showed the oxidation and functionalization of nanotubes. The TGA curve showed decrease in thermal decomposition temperature of MWCNTs after oxidation and attachment with titania nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-32

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] GK. Mor, K. Shankar, M. Paulose, OK. Varghese, and CA. Grimes: Nano. Lett. Vol. 6 (2006), p.215.

Google Scholar

[2] S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida: J. Phys. Chem. B. Vol. 107 (2003), p.8607.

Google Scholar

[3] H. Zhao, D. Jiang, S. Zhang, K. Catterall and R. John: Anal. Chem. Vol. 76 (2004), p.155.

Google Scholar

[4] OK. Varghese, D. Gong, M. Paulose, KG Ong and CA Grimes: Sens. Actuators B Chem. Vol. 93 (2003), p.338.

Google Scholar

[5] X. Quan, S. Yang, X. Ruan and H. Zhao: Environ. Sci. Technol. Vol. 39 (2005), p.3770.

Google Scholar

[6] H. Zhang, X. Quan, S. Chen and H. Zhao: Environ. Sci. Technol. Vol. 40 (2006), p.6104.

Google Scholar

[7] J. Nowotny, T. Bak, MK. Nowotony and LR. Sheppard: J. Phys. Chem. B. Vol. 110 (2006), p.18492.

Google Scholar

[8] JH. Park, OO. Park and S. Kim: Appl. Phys. Lett. Vol. 89 (2006), p.163106.

Google Scholar

[9] E. Auer, A. Freund, J. Pietsch and T. Tacke: Appl. Catal. A Vol. 173 (1998), p.259.

Google Scholar

[10] H. Tang, JH. Chen, ZP. Huang, DZ. Wang, Ren ZF, Nie LH, et al: Carbon, Vol. 42 (2004), p.191.

Google Scholar

[11] Y. Liang, H. Zhang, B. Yi, Z. Zhang and Z. Tan: Carbon, Vol. 43 (2005), p.144.

Google Scholar

[12] J. Chen, MA. Hamon, H. Hu, Y. Chen, AM. Rao, PC. Eklund, et al: Science, Vol. 282 (1998), p.95.

Google Scholar

[13] J. Liu, AG. Rinzler, H. Dai, JH. Hafner, RK. Bradly, PJ. Boul, et al: Science, Vol. 280 (1998), p.1253.

Google Scholar

[14] ZB. Zhang, L. Jiantong, AL. Cabezas and SL. Zhang: Chem. Phys. Lett. Vol. 476 (2009), p.258.

Google Scholar

[15] Y. Wang, DC. Alsmeyer, RL. McCreery: Chem. Mater. Vol 2 (1990), p.557.

Google Scholar

[16] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, et al: Carbon, Vol. 46 (2008), p.833.

DOI: 10.1016/j.carbon.2008.02.012

Google Scholar

[17] ID. Rosca, F. Watari, M. Uo and T. Akasaka: Carbon, Vol. 43 (2005), p.3124.

Google Scholar

[18] S. Shrestha, W. C. Choi, W. Song, Y. T. Kwon, S. P. Shrestha and C. Y. Park: Carbon, Vol. 48 (2010), p.54.

Google Scholar

[19] J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, in: Hand Book of X-ray Photoelectron Spectroscopy, edited by J. Chastain and R. J. King Jr. (Physical Electronics, Inc. USA 1995).

Google Scholar