Structural Characterization of Nonionic Surfactant Reverse Micelles in Diglycerol Monolaurate/Squalene System

Article Preview

Abstract:

Structure of nonionic surfactant diglycerol monolaurate (C12G2) reverse micelles in squalene at different surfactant concentrations and temperatures is presented. For the structural characterization of the micelles, small-angle X-ray scattering (SAXS) technique is used. The scattering data is evaluated by virtually model free generalized indirect Fourier transformation (GIFT) method. GIFT analysis of the SAXS data has shown the clear evidence on the formation of rod-like micelles in the C12G2/squalene system at higher temperatures. At fixed temperature, increasing surfactant concentration induces one-dimensional micellar growth; the maximum length of the micelles increases with concentration, but the micellar cross-section remains essentially the same. On the other hand, at fixed concentration, the maximum length of the micelles decreases with the rise of temperature. It is found that the length of micelles decreases by ~ 35% keeping cross-section diameter unchanged with the rise of temperature from 60 to 80 °C in 5 wt% wt% C12G2/squalene system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-92

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.P. Pileni, Structure and Reactivity in Reverse Micelles; M.P. Pileni, Ed. Elsevier: Amsterdam Vol 65 (1989).

Google Scholar

[2] M. Boutonnet, J. Kizling, P. Stenius, P. Colloids and Surfaces: 5 (1982), 209.

Google Scholar

[3] I. Lisiecki, M. P. Pileni, J. Am. Chem. Soc.: 115 (1993), 3887.

Google Scholar

[4] M.P. Pileni, Langmuir 13 (1997), 3266.

Google Scholar

[5] M.A. López-Quintela, Current Opinion in Colloid and Interface Science: 8 (2003), 137.

Google Scholar

[6] M.A. López-Quintela, C. Tojo, M.C. Blanco, L. García Rio, J.R. Leis, Current Opinion in Colloid and Interface Science: 9 (2004), 264.

DOI: 10.1016/j.cocis.2004.05.029

Google Scholar

[7] B. L. Cushing, V.L. Kolesnichenko, C.J. O'Connor, Chem. Rev.: 104 (2004), 3893.

Google Scholar

[8] M.P. Pileni, Adv. Colloid Interface Sci.: 46 (1993), 139.

Google Scholar

[9] H. Kunieda, K. Shinoda, J. Colloid and Interface Sci.: 75 (1980), 601.

Google Scholar

[10] H. Kunieda, K. Shinoda, J. Dispers. Sci. Technol.: 3 (1982), 233.

Google Scholar

[11] S.E. Friberg, I. Blute, H. Kunieda, P. Stenius, Langmuir: 2 (1986), 659.

Google Scholar

[12] H. Kunieda, C. Solans, J.L. Parra, Colloids and Surfaces: 24 (1987), 225.

Google Scholar

[13] C. Solans, R. Pons, H.T. Davis, D.F. Evans, K. Nakamura, H. Kunieda, Langmuir: 9 (1993), 1479.

Google Scholar

[14] H. Md. Uddin, C. Rodriguez, K. Watanabe, M.A. López-Quintela, T. Kato, H. Furukawa, A. Harashima, H. Kunieda, Langmuir: 17 (2001), 5169.

DOI: 10.1021/la010289d

Google Scholar

[15] H. Kunieda, M. Tanimoto, K. Shigeta, C. Rodriguez, J. Oleo Sci.: 50 (2001), 633.

Google Scholar

[16] M. Kaneko, K. Matsuzawa, H. Md. Uddin, M.A. López-Quintela, H. Kunieda, J. Phys. Chem. B: 108 (2004), 12736.

Google Scholar

[17] H. Kunieda, H. Md. Uddin, M. Horii, H. Furukawa, A. Harashima, J. Phys. Chem. B: 105 (2001), 5419.

Google Scholar

[18] H. Kunieda, K. Shigeta, K. Ozawa, M. Suzuki, J. Phys. Chem. B: 101 (1997), 7952.

Google Scholar

[19] S. Forster, M. Zisenis, E. Wenz, M. Antonietti, J. Chem. Phys.: 104 (1996), 9956.

Google Scholar

[20] X.F. Zhong, S.K. Varsheny, A. Eisenberg, Macromolucules: 25 (1992), 7160.

Google Scholar

[21] A. Desjardins, T.G.M. van de Ven, A. Eisenberg, Macromolecules: 25 (1992), 2412.

Google Scholar

[22] C. Rodriguez, H. Md. Uddin, K. Watanabe, H. Furukawa, A. Harashima, H. Kunieda, J. Phys. Chem. B: 106 (2002), 22.

Google Scholar

[23] T.M. Herrington, S.S. Shali, J. Am. Oil. Chem. Soc.: 65 (1988), 1677.

Google Scholar

[24] C. Rodriguez-Aberu, D.P. Acharya, S. Hinata, M. Ishitobi, H. Kunieda, J. Colloid Interface Sci.: 262 (2003), 500.

Google Scholar

[25] L.K. Shrestha, T. Sato, D.P. Acharya, T. Iwanaga, K. Aramaki, H. Kunieda, J. Phys. Chem. B: 110 (2006), 12266.

Google Scholar

[26] L.K. Shrestha, M. Kaneko, T. Sato, D.P. Acharya, T. Iwanaga, H. Kunieda, Langmuir: 22 (2006), 1449.

Google Scholar

[27] L.K. Shrestha, T. Sato, K. Aramaki, J. Phys. Chem. B: 111 (2007), 1664.

Google Scholar

[28] G. Fritz, A. Bergmann, O. Glatter, J. Chem. Phys.: 113 (2000), 9733.

Google Scholar

[29] O. Glatter, G. Fritz, H. Lindner, J. Brunner-Popela, R. Mittelbach, R. Strey, S.U. Egelhaaf, Langmuir: 16 (2000), 8692.

DOI: 10.1021/la000315s

Google Scholar

[30] J. Brunner-Popela, R. Mittelbach, R. Strey, K.V. Shubert, E.E. Kaler, O. Glatter, J. Chem. Phys.: 110 (1999), 10623.

Google Scholar

[31] B. Weyerich, J. Brunner-Popela, O. Glatter, J. Appl. Cryst.: 32 (1999), 197.

Google Scholar

[32] G. Fritz, A. Bergmann, J. Appl. Cryst.: 37 (2004), 815.

Google Scholar

[33] O. Glatter, Progr. Colloid Polym. Sci.: 84 (1991), 46.

Google Scholar

[34] O. Glatter, J. Appl. Cryst.: 13 (1980), 577.

Google Scholar

[35] O. Glatter, J. Appl. Cryst.: 14 (1981), 101.

Google Scholar

[36] O. Glatter, B. Hainisch, J. Appl. Cryst.: 17 (1984), 435.

Google Scholar