[1]
M. B. Ali, R. Saidur, and M. S. Hossain, A review on emission analysis in cement industries," Renewable and Sustainable Energy Reviews, (2011), 2252–2261.
DOI: 10.1016/j.rser.2011.02.014
Google Scholar
[2]
A. Bouchikhi et al., Use of residual waste glass in an alkali-activated binder – Structural characterization, environmental leaching behavior and comparison of reactivity, Journal of Building Engineering, (2021),101903.
DOI: 10.1016/j.jobe.2020.101903
Google Scholar
[3]
F. Pacheco-Torgal, Z. Abdollahnejad, a. F. Camões, M. Jamshidi, and Y. Ding, Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue? Construction and Building Materials,(2012), 400–405.
DOI: 10.1016/j.conbuildmat.2011.12.017
Google Scholar
[4]
S. K. John, Y. Nadir, and K. Girija, Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: A review, Construction and Building Materials, (2021), 122443.
DOI: 10.1016/j.conbuildmat.2021.122443
Google Scholar
[5]
Z. Zhang, Y. Zhu, T. Yang, L. Li, H. Zhu, and H. Wang, Conversion of local industrial wastes into greener cement through geopolymer technology : A case study of high-magnesium nickel slag, Journal of Cleaner Production, (2017), 463–471.
DOI: 10.1016/j.jclepro.2016.09.147
Google Scholar
[6]
J. Davidovits, Geopolymers: Ceramic-like inorganic polymers, Journal of Ceramic Science and Technology, (2017),335–350.
Google Scholar
[7]
H. Xu and J. S. J. Van Deventer, The geopolymerisation of alumino-silicate minerals, International Journal of Mineral Processing, (2000), 247–266.
DOI: 10.1016/s0301-7516(99)00074-5
Google Scholar
[8]
Prof. Dr. Joseph Davidovits, Environmentally Driven Geopolymer Cement Applications, Geopolymer Conference, (2002),1–9.
Google Scholar
[9]
J. Davidovits, Geopolymers based on natural and synthetic metakaolin a critical review, Ceramic Engineering and Science Proceedings, (2018), 201–214.
DOI: 10.1002/9781119474746.ch19
Google Scholar
[10]
L. Machiels, L. Arnout, P. T. Jones, B. Blanpain, and Y. Pontikes, Inorganic polymer cement from fe-silicate glasses: Varying the activating solution to glass ratio, Waste and Biomass Valorization, (2014), 411–428.
DOI: 10.1007/s12649-014-9296-5
Google Scholar
[11]
P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. Deventer, Geopolymer technology: the current state of the art, Journal of Materials Science, (2006), 2917–2933.
DOI: 10.1007/s10853-006-0637-z
Google Scholar
[12]
İ. B. Topçu, M. U. Toprak, and T. Uygunoğlu, Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement, Journal of Cleaner Production, (2014), 211–217.
DOI: 10.1016/j.jclepro.2014.06.037
Google Scholar
[13]
J. L. Provis and J. S. J. van Deventer, Geopolymers: structure, processing, properties and industrial applications. Boca raton Boston New York Washington, DC, (2009).
Google Scholar
[14]
M. J. Moghadam, R. Ajalloeian, and A. Hajiannia, Preparation and application of alkali-activated materials based on waste glass and coal gangue: A review, Construction and Building Materials, (2019), 84–98.
DOI: 10.1016/j.conbuildmat.2019.06.071
Google Scholar
[15]
G. Görhan and G. Kürklü, The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures, Composites Part B: Engineering, (2014), 371–377.
DOI: 10.1016/j.compositesb.2013.10.082
Google Scholar
[16]
F. Ameri, P. Shoaei, S. A. Zareei, and B. Behforouz, Geopolymers vs. alkali-activated materials (AAMs): A comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars, Construction and Building Materials, (2019), 49–63.
DOI: 10.1016/j.conbuildmat.2019.06.079
Google Scholar
[17]
K. Chen, D. Wu, L. Xia, Q. Cai, and Z. Zhang, Geopolymer concrete durability subjected to aggressive environments – A review of influence factors and comparison with ordinary Portland cement,, Construction and Building Materials, (2021), 122496.
DOI: 10.1016/j.conbuildmat.2021.122496
Google Scholar
[18]
C. Medina, M. I. Sánchez De Rojas, and M. Frías, Freeze-thaw durability of recycled concrete containing ceramic aggregate, Journal of Cleaner Production, (2013), 151–160.
DOI: 10.1016/j.jclepro.2012.08.042
Google Scholar
[19]
T. Bakharev, Durability of geopolymer materials in sodium and magnesium sulfate solutions,, Cement and Concrete Research, (2005), 1233–1246.
DOI: 10.1016/j.cemconres.2004.09.002
Google Scholar
[20]
T. Bakharev, Resistance of geopolymer materials to acid attack, Cement and Concrete Research, (2005), 658–670.
DOI: 10.1016/j.cemconres.2004.06.005
Google Scholar
[21]
W. K. W. Lee and J. S. J. van Deventer, The effects of inorganic salt contamination on the strength and durability of geopolymers,, Colloids and Surfaces A: Physicochemical and Engineering Aspects, (2002), 2–3.
DOI: 10.1016/s0927-7757(02)00239-x
Google Scholar
[22]
H. Zhu, Z. Zhang, Y. Zhu, and L. Tian, Durability of alkali-activated fly ash concrete: Chloride penetration in pastes and mortars, Construction and Building Materials, (2014), 51–59.
DOI: 10.1016/j.conbuildmat.2014.04.110
Google Scholar
[23]
B. J. Mathew, M. Sudhakar, and C. Natarajan, Development of Coal Ash – GGBS based geopolymer bricks, (2013),133–139.
Google Scholar
[24]
Z. T. Yao et al., Earth-Science Reviews A comprehensive review on the applications of coal fly ash, (2015), 105–121.
Google Scholar
[25]
Davidovits, M. Davidovics, P. N. Balaguru, a Foden, U. Sorathia, and R. E. Lyon, Geopolymer Composites,, Composites, (1996).
DOI: 10.1002/(sici)1099-1018(199703)21:2<67::aid-fam596>3.0.co;2-n
Google Scholar
[26]
S. a. Bernal and J. L. Provis, Durability of alkali-activated materials: Progress and perspectives, Journal of the American Ceramic Society, (2014), 997–1008.
DOI: 10.1111/jace.12831
Google Scholar
[27]
J. Davidovits, Geopolymers - Inorganic polymeric new materials, Journal of Thermal Analysis, (1991), 1633–1656.
DOI: 10.1007/bf01912193
Google Scholar
[28]
A. W. Ourgessa, A. Aniley, A. G. Gudisa, I. Neme, and A. Bekele, Effect of Alkaline Concentration and Solid Liquid Ratio on the Acid Resistance of Fly Ash Based Geopolymer Mortar, American Journal of Science, Engineering and Technology, (2019), 80.
DOI: 10.11648/j.ajset.20190404.14
Google Scholar
[29]
P. Chindaprasirt, C. Jaturapitakkul, W. Chalee, and U. Rattanasak, Comparative study on the characteristics of fly ash and bottom ash geopolymers, Waste Management, (2009), 539–543.
DOI: 10.1016/j.wasman.2008.06.023
Google Scholar
[30]
V. F. F. Barbosa, K. J. D. MacKenzie, and C. Thaumaturgo, Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers, International Journal of Inorganic Materials, (2000), 309–317.
DOI: 10.1016/s1466-6049(00)00041-6
Google Scholar
[31]
D. Zaharaki, K. Komnitsas, and V. Perdikatsis, Use of analytical techniques for identification of inorganic polymer gel composition, Journal of Materials Science, (2010),2715–2724.
DOI: 10.1007/s10853-010-4257-2
Google Scholar
[32]
M. Soutsos, A. P. Boyle, R. Vinai, A. Hadjierakleous, and S. J. Barnett, Factors influencing the compressive strength of fly ash based geopolymers, Construction and Building Materials, (2015), 355–368.
DOI: 10.1016/j.conbuildmat.2015.11.045
Google Scholar
[33]
F. Skvara, L. Kopecky, J. Nemecek, and Z. Bittnar, Microstructure of geopolymer materials based on flyash, Ceramics-Silikaty, (2005), 208–215.
Google Scholar
[34]
F. G. M. Aredes, T. M. B. Campos, J. P. B. Machado, K. K. Sakane, G. P. Thim, and D. D. Brunelli, Effect of cure temperature on the formation of metakaolinite-based geopolymer, Ceramics International, (2015),7302–7311.
DOI: 10.1016/j.ceramint.2015.02.022
Google Scholar
[35]
P. Nath and P. K. Sarker, Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete, Construction and Building Materials, (2016), 22–31.
DOI: 10.1016/j.conbuildmat.2016.11.034
Google Scholar
[36]
M. Olivia and H. R. Nikraz, Strength and water penetrability of fly ash geopolymer concrete, Journal of Engineering and Applied Sciences, (2011), 70–78.
Google Scholar
[37]
S. Thokchom, P. Ghosh, and S. Ghosh, Effect of water absorption, porosity and sorptivity on durability of geopolymer mortars, (2009), 28–32.
Google Scholar
[38]
J. S. J. van Deventer, J. L. Provis, and P. Duxson, Technical and commercial progress in the adoption of geopolymer cement, Minerals Engineering, (2012), 89–104.
DOI: 10.1016/j.mineng.2011.09.009
Google Scholar