Durability of Raw Earth Blocks Reinforced with Wheat Straw Fibers

Article Preview

Abstract:

The key drivers of the growing interest in the recovery of local materials, particularly land and waste plants, are low-cost building materials, thermal comfort, decreased energy consumption, and decreased carbon dioxide polluting emissions. This work's primary objective is to test a bio-sourced composite material that takes the form of a block of unfinished soil that has been stabilized with cement and blended with wheat straw. This study is being done with the objective of examining the impact of this fiber at different weight percentages (0, 2, 3%, and 4%) on the mechanical behavior, durability, and thermophysical properties of the produced blocks. The results obtained indicated an increase in thermal conductivity, from 2.75 W/mK for the blocks without wheat straw fiber to 0.398 W/mK for those getting 4% of the wheat straw fiber, signifying an improvement in thermal insulation. While retaining the low performance threshold required by the earth construction standard, this improvement was accompanied by an average decrease in mechanical performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-148

Citation:

Online since:

July 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Schewe, S. N. Gosling, C. Reyer, F. Zhao, P. Ciais, J. Elliott, et al., "State-of-the-art global models underestimate impacts from climate extremes," Nature communications, vol. 10, pp.1-14, 2019.

Google Scholar

[2] M. Missoum, A. Hamidat, L. Loukarfi, and K. Abdeladim, "Impact of rural housing energy performance improvement on the energy balance in the North-West of Algeria," Energy and Buildings, vol. 85, pp.374-388, 2014.

DOI: 10.1016/j.enbuild.2014.09.045

Google Scholar

[3] A. O. Obafemi and S. Kurt, "Environmental impacts of adobe as a building material: The north cyprus traditional building case," Case Studies in Construction Materials, vol. 4, pp.32-41, 2016.

DOI: 10.1016/j.cscm.2015.12.001

Google Scholar

[4] S. Mihoub, A. Chermiti, and H. Beltagy, "Methodology of determining the optimum performances of future concentrating solar thermal power plants in Algeria," Energy, vol. 122, pp.801-810, 2017.

DOI: 10.1016/j.energy.2016.12.056

Google Scholar

[5] Z. Abada and M. Bouharkat, "Study of management strategy of energy resources in Algeria," Energy Reports, vol. 4, pp.1-7, 2018.

DOI: 10.1016/j.egyr.2017.09.004

Google Scholar

[6] G. A. Abanto, M. Karkri, G. Lefebvre, M. Horn, J. L. Solis, and M. M. Gómez, "Thermal properties of adobe employed in Peruvian rural areas: Experimental results and numerical simulation of a traditional bio-composite material," Case Studies in Construction Materials, vol. 6, pp.177-191, 2017.

DOI: 10.1016/j.cscm.2017.02.001

Google Scholar

[7] T. Ashour, A. Korjenic, S. Korjenic, and W. Wu, "Thermal conductivity of unfired earth bricks reinforced by agricultural wastes with cement and gypsum," Energy and Buildings, vol. 104, pp.139-146, 2015.

DOI: 10.1016/j.enbuild.2015.07.016

Google Scholar

[8] N. Li, G.-z. Luo, B.-z. Li, and Y.-q. Huang, "Impact of light-weight external thermal insulation materials on building surrounding thermal environment in summer," Journal of Central South University, vol. 19, pp.1639-1644, 2012.

DOI: 10.1007/s11771-012-1187-y

Google Scholar

[9] L. Sagbansua and F. Balo, "Ecological impact & financial feasibility of Energy Recovery (EIFFER) Model for natural insulation material optimization," Energy and Buildings, vol. 148, pp.1-14, 2017.

DOI: 10.1016/j.enbuild.2017.05.015

Google Scholar

[10] N. Degirmenci, "The using of waste phosphogypsum and natural gypsum in adobe stabilization," Construction and Building Materials, vol. 22, pp.1220-1224, 2008.

DOI: 10.1016/j.conbuildmat.2007.01.027

Google Scholar

[11] M. C. de Castrillo, M. Philokyprou, and I. Ioannou, "Comparison of adobes from pre-history to-date," Journal of Archaeological Science: Reports, vol. 12, pp.437-448, 2017.

DOI: 10.1016/j.jasrep.2017.02.009

Google Scholar

[12] H. Guillaud, T. Joffroy, and P. Odul, "Compressed earth blocks: Manual of design and construction," Vieweg, Eschborn, Germany, 1995.

Google Scholar

[13] A. Ayoub, "Habitations en milieu rural au nord-ouest de la Jordanie," Bulletin d'études orientales, vol. 32, pp.7-19, 1980.

Google Scholar

[14] S. Chaibeddra, "Durabilité du béton de terre stabilisées," Alger, 2012.

Google Scholar

[15] J. Paulus, "C ONSTRUCTION EN T ERRE C RUE: D ISPOSITIONS QUALITATIVES, CONSTRUCTIVES ET ARCHITECTURALES–Application à un cas pratique: Ouagadougou," 2015.

Google Scholar

[16] Y. K. Abdulrahman, "Durability Properties of Stabilized Earth Blocks," University of Sains MALAYSIA, 2009.

Google Scholar

[17] A. Kémajou, L. Mba, and P. Meukam, "Application of artificial neural network for predicting the indoor air temperature in modern building in humid region," British Journal of Applied Science & Technology, vol. 2, p.23, 2012.

DOI: 10.9734/bjast/2012/641

Google Scholar

[18] D. Boro, H. E. V. Donnou, I. Kossi, N. Bado, F. P. Kieno, and J. Bathiebo, "Vertical Profile of Wind Speed in the Atmospheric Boundary Layer and Assessment of Wind Resource on the Bobo Dioulasso Site in Burkina Faso," 2019.

DOI: 10.4236/sgre.2019.1011016

Google Scholar

[19] H. Houben and H. Guillaud, "CRATerre: Traité de Construction en Terre," Éditions Parenthèses: Marseille, France, 2006.

Google Scholar

[20] M. Moevus-Dorvaux, L. Couvreur, L. Fontaine, R. Anger, P. Doat, L. Ronsoux, et al., "enViRonmental-clay-Based concRete," in Terra 2016, 2016, pp.208-212.

Google Scholar

[21] H. Guillaud, P. Doat, P. Rollet, H. Houben, P. Garnier, L. Fontaine, et al., "Technologie de construction et architecture de terre. Proposition de directions prioritaires de recherche pour la République de Corée: Rapport final (Volume 1/2)," CRAterre; Université Nationale de Mokpo; Chaire UNESCO Architecture de terre …, 2008.

DOI: 10.18006/2015.3(3).288.297

Google Scholar

[22] H. Nagaraj, M. Sravan, T. Arun, and K. Jagadish, "Role of lime with cement in long-term strength of Compressed Stabilized Earth Blocks," International Journal of Sustainable Built Environment, vol. 3, pp.54-61, 2014.

DOI: 10.1016/j.ijsbe.2014.03.001

Google Scholar

[23] P. Walker, "The Australian earth building handbook," in The Australian Earth Building Handbook, ed: SAI Global Limited, 2002.

Google Scholar

[24] K. Dao, M. Ouedraogo, Y. Millogo, J.-E. Aubert, and M. Gomina, "Thermal, hydric and mechanical behaviours of adobes stabilized with cement," Construction and Building Materials, vol. 158, pp.84-96, 2018.

DOI: 10.1016/j.conbuildmat.2017.10.001

Google Scholar

[25] V. Sharma, B. M. Marwaha, and H. K. Vinayak, "Enhancing durability of adobe by natural reinforcement for propagating sustainable mud housing," International Journal of Sustainable Built Environment, vol. 5, pp.141-155, 2016.

DOI: 10.1016/j.ijsbe.2016.03.004

Google Scholar

[26] R. Illampas, I. Ioannou, and D. C. Charmpis, "Adobe bricks under compression: Experimental investigation and derivation of stress–strain equation," Construction and Building Materials, vol. 53, pp.83-90, 2014.

DOI: 10.1016/j.conbuildmat.2013.11.103

Google Scholar

[27] M. Bouhicha, F. Aouissi, and S. Kenai, "Performance of composite soil reinforced with barley straw," Cement and concrete composites, vol. 27, pp.617-621, 2005.

DOI: 10.1016/j.cemconcomp.2004.09.013

Google Scholar

[28] K. Ghavami, R. D. Toledo Filho, and N. P. Barbosa, "Behaviour of composite soil reinforced with natural fibres," Cement and Concrete Composites, vol. 21, pp.39-48, 1999.

DOI: 10.1016/s0958-9465(98)00033-x

Google Scholar

[29] D. Silveira, H. Varum, A. Costa, T. Martins, H. Pereira, and J. Almeida, "Mechanical properties of adobe bricks in ancient constructions," Construction and Building Materials, vol. 28, pp.36-44, 2012.

DOI: 10.1016/j.conbuildmat.2011.08.046

Google Scholar

[30] J.-C. Morel, A. Pkla, and P. Walker, "Compressive strength testing of compressed earth blocks," Construction and Building materials, vol. 21, pp.303-309, 2007.

DOI: 10.1016/j.conbuildmat.2005.08.021

Google Scholar

[31] R. Bahar, M. Benazzoug, and S. Kenai, "Performance of compacted cement-stabilised soil," Cement and concrete composites, vol. 26, pp.811-820, 2004.

DOI: 10.1016/j.cemconcomp.2004.01.003

Google Scholar

[32] A. V. Oskouei, M. Afzali, and M. Madadipour, "Experimental investigation on mud bricks reinforced with natural additives under compressive and tensile tests," Construction and Building Materials, vol. 142, pp.137-147, 2017.

DOI: 10.1016/j.conbuildmat.2017.03.065

Google Scholar

[33] A. Laborel-Préneron, J.-E. Aubert, C. Magniont, C. Tribout, and A. Bertron, "Plant aggregates and fibers in earth construction materials: A review," Construction and building materials, vol. 111, pp.719-734, 2016.

DOI: 10.1016/j.conbuildmat.2016.02.119

Google Scholar

[34] H. Binici, O. Aksogan, M. N. Bodur, E. Akca, and S. Kapur, "Thermal isolation and mechanical properties of fibre reinforced mud bricks as wall materials," Construction and Building materials, vol. 21, pp.901-906, 2007.

DOI: 10.1016/j.conbuildmat.2005.11.004

Google Scholar

[35] M. Sutcu, J. J. del Coz Díaz, F. P. Á. Rabanal, O. Gencel, and S. Akkurt, "Thermal performance optimization of hollow clay bricks made up of paper waste," Energy and Buildings, vol. 75, pp.96-108, 2014.

DOI: 10.1016/j.enbuild.2014.02.006

Google Scholar

[36] T. S. Ts825, "Thermal insulation requirements for buildings," ed: Turkish Standards Institution Ankara, Turkey, 2008.

Google Scholar

[37] M. C. J. Delgado and I. C. Guerrero, "The selection of soils for unstabilised earth building: A normative review," Construction and building materials, vol. 21, pp.237-251, 2007.

DOI: 10.1016/j.conbuildmat.2005.08.006

Google Scholar

[38] AFNOR, "NF P94‐056: Analyse granulométrique–Méthode par tamisage à sec après lavage," ed: Association Française de Normalisation (AFNOR) Puteaux, France, 1996.

Google Scholar

[39] R. H. Bogue, The chemistry of Portland cement vol. 79: LWW, 1955.

Google Scholar

[40] D. Montane, X. Farriol, J. Salvado, P. Jollez, and E. Chornet, "Fractionation of wheat straw by steam-explosion pretreatment and alkali delignification. Cellulose pulp and byproducts from hemicellulose and lignin," Journal of wood Chemistry and Technology, vol. 18, pp.171-191, 1998.

DOI: 10.1080/02773819809349575

Google Scholar

[41] H. Houben and H. Guillaud, "Traité de construction en terre CRATerre," L'Encyclopédie de la construction en terre, vol. 1, p.300, 1989.

Google Scholar

[42] Y. Millogo and J.-C. Morel, "Microstructural characterization and mechanical properties of cement stabilised adobes," Materials and structures, vol. 45, pp.1311-1318, 2012.

DOI: 10.1617/s11527-012-9833-2

Google Scholar

[43] X. AFNor, "P13-901 "Blocs de terre comprimée pour murs et cloisons: définitions-Spécifications-Méthodes d'essais-Conditions de réception"," Saint-Denis La Plaine Cedex: AFNor, 2001.

Google Scholar

[44] M. C. J. Delgado and I. C. Guerrero, "Earth building in Spain," Construction and building materials, vol. 20, pp.679-690, 2006.

DOI: 10.1016/j.conbuildmat.2005.02.006

Google Scholar

[45] R. Belakroum, A. Gherfi, K. Bouchema, A. Gharbi, Y. Kerboua, M. Kadja, et al., "Hygric buffer and acoustic absorption of new building insulation materials based on date palm fibers," Journal of Building Engineering, vol. 12, pp.132-139, 2017.

DOI: 10.1016/j.jobe.2017.05.011

Google Scholar

[46] L. Boukhattem, M. Boumhaout, H. Hamdi, B. Benhamou, and F. A. Nouh, "Moisture content influence on the thermal conductivity of insulating building materials made from date palm fibers mesh," Construction and Building Materials, vol. 148, pp.811-823, 2017.

DOI: 10.1016/j.conbuildmat.2017.05.020

Google Scholar

[47] G. C. Bureau, "New Mexico adobe and rammed earth building code," General Construction Bureau, USA, vol. 311, p.312, 1991.

Google Scholar

[48] K. Al Rim, A. Ledhem, O. Douzane, R. Dheilly, and M. Queneudec, "Influence of the proportion of wood on the thermal and mechanical performances of clay-cement-wood composites," Cement and Concrete Composites, vol. 21, pp.269-276, 1999.

DOI: 10.1016/s0958-9465(99)00008-6

Google Scholar

[49] Ş. Yetgin, Ö. Çavdar, and A. Cavdar, "The effects of the fiber contents on the mechanic properties of the adobes," Construction and Building Materials, vol. 22, pp.222-227, 2008.

DOI: 10.1016/j.conbuildmat.2006.08.022

Google Scholar

[50] S. Sair, A. Oushabi, A. Kammouni, O. Tanane, Y. Abboud, and A. El Bouari, "Mechanical and thermal conductivity properties of hemp fiber reinforced polyurethane composites," Case studies in construction materials, vol. 8, pp.203-212, 2018.

DOI: 10.1016/j.cscm.2018.02.001

Google Scholar

[51] M. Ouedraogo, K. Dao, Y. Millogo, J.-E. Aubert, A. Messan, M. Seynou, et al., "Physical, thermal and mechanical properties of adobes stabilized with fonio (Digitaria exilis) straw," Journal of Building Engineering, vol. 23, pp.250-258, 2019.

DOI: 10.1016/j.jobe.2019.02.005

Google Scholar

[52] N. Benmansour, B. Agoudjil, A. Gherabli, A. Kareche, and A. Boudenne, "Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building," Energy and Buildings, vol. 81, pp.98-104, 2014.

DOI: 10.1016/j.enbuild.2014.05.032

Google Scholar