Bifurcation of Non-Semi-Simple Zero Eigenvalues at the Critical Point of the Statical Bifurcation of Nonlinear Rotor System

Article Preview

Abstract:

The objective of the study is to discuss the instability of the center subspace of a nonlinear rotor system with gyroscopic, inertial and potential forces, and nonlinear forces of the shaft, whose linear approximation has a m-multiple non-semi-simple zero eigenvalues. That is to discuss how the parameter changes affect the variations of non-semi-simple zero eigenvalues of the center subspace. The Puiseux expansion is used to develop the expressions of variations of non-semi-simple eigenvalues. The method for computing the generalized modes of the center subspace are given, and expression of variations of 2-multiple non-semi-simple zero eigenvalues is transformed into a more convenient form.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 118-120)

Pages:

364-368

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Verduzco, Control of oscillations form the k-zero bifurcation, Chaos, Solitons and Fractals, vol. 33, pp.492-504, (2007).

DOI: 10.1016/j.chaos.2006.01.030

Google Scholar

[2] P. Yu, Bifurcation dynamics in control systems, In: Bifurcation control: Theory and applications. Berlin: Spring-Verlag, 2003, pp.99-126.

Google Scholar

[3] P. Yu, G. Chen, Hopf bifurcation control using nonlinear feedback with polynomial functions, Int. J. Bifurcat. Chaos, vol. 14(5), pp.1673-1704, (2004).

DOI: 10.1142/s0218127404010291

Google Scholar

[4] Q. Bi, P. Yu, Computation of normal forms of differential equations associated with non-semisimple zero eigenvalues, Int. J. Bifurcat. Chaos, vol. 8(12), pp.2279-2319, (1998).

DOI: 10.1142/s0218127498001868

Google Scholar

[5] P. Yu, A.Y.T. Leung, A perturbation method for computing the simplest normal forms of dynamical systems, J. Sound Vib., vol. 261(1), pp.123-151, (2003).

DOI: 10.1016/s0022-460x(02)00954-9

Google Scholar

[6] L. Meirovitch, G. Ryland, A perturbation technique for gyroscopic systems with small international and external damping. J sound Vib, vol. 100(3), pp.393-408, (1985).

DOI: 10.1016/0022-460x(85)90295-0

Google Scholar

[7] L. Cveticanin, Resonant vibrations of nonlinear rotor, Mech. Mach. Theory, vol. 30(4), pp.581-588, 1995. A. Deif, Advanced matrix theory for scientist and engineers, 2nd ed. Tunbrige Wells UK, Abacus Press, (1991).

DOI: 10.1016/0094-114x(94)00059-t

Google Scholar

[8] S.H. Chen, Matrix Perturbation Theory in Structural Dynamic Design, Science Press, Beijing, (2007).

Google Scholar