A Mixed-Effect Multi-Failure-Mechanism Fatigue Reliability Model

Article Preview

Abstract:

Based on the concept of multilevel statistics, mixed-effect fatigue reliability models are presented, by which fatigue reliability can be directly calculated according to stress distribution and fatigue life distribution function condition to stress. Mathematically, the fatigue reliability is estimated as the expectation of a conditional survival probability function to the stochastic stress history. Especially, such models are capable of estimating the fatigue reliability of a component with competing failure mechanisms such as conventional fatigue and giga-cycle fatigue, where two groups of P-S-N curves are involved.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 118-120)

Pages:

37-42

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Kececioglu: Nuclear Engineering and Design, Vol. 19 (1972), p.259.

Google Scholar

[2] F.J. Witt: Pressure Vessel and Piping Technology - A Decade of Progress (1985).

Google Scholar

[3] D. Kececioglu and J. Zhang: Proceedings Annual Reliability and Maintainability Symposium (1998).

Google Scholar

[4] N.A. Siddiqui and S. Ahmad: Marine Structures, Vol. 14 (2001), p.331.

Google Scholar

[5] Z. M. He, H. T. Loh and M. Xie: International Journal of Fatigue, Vol. 29 (2007), p.245.

Google Scholar

[6] A. U. Efren and M. Torgeir: International Journal of Fatigue, Vol. 29 (2007), p.444.

Google Scholar

[7] H.Y. Wang, N. H. Kim and Y.J. Kim: Transactions of the ASME, Vol. 128 (2006), p.919.

Google Scholar

[8] Z. Guede, B. Sudret and M. Lemaire: International Journal of Fatigue, Vol. 29 (2007), p.1359.

Google Scholar

[9] R. B. Sghaier, C. Bouraoui, R. Fathallah, et al: International Journal of Fatigue, Vol. 29 (2007), p.209.

Google Scholar

[10] S. Tanaka, M. Ichikawa and S. Akita: Engineering Fracture Mechanics, Vol. 20 (1984), p.501.

Google Scholar

[11] A.S.R. Murty, U.C. Gupta and A.R. Krishna: Int. J. Fatigue, Vol. 17 (1995), p.85.

Google Scholar

[12] K. Ni and S.K. Zhang: Reliability Engineering and System Safety, Vol. 68 (2000), p.153.

Google Scholar

[13] L. Y. Xie:International Journal of Pressure Vessels and Piping, Vol. 76 (1999), p.267.

Google Scholar

[14] Y.S. Petryna, D. Pfanner, F. Stangenberg, et al: Reliability Engineering and System Safety, Vol. 77 (2002), p.253.

DOI: 10.1016/s0951-8320(02)00058-3

Google Scholar

[15] S.W. Raudenbush and A.S. Bryk: Thousand Oaks, CA: SAGE Publications (2002).

Google Scholar

[16] H. Pham: Int. J. Performability Engineering, Vol. 1 (2005), p.145.

Google Scholar

[17] T. Tanaka: Proc. Fatigue 84, Vol. 2, (1984).

Google Scholar

[18] C.R. Sohar, A. Betzwar-Kotas, C. Gierl, et al: International Journal of Fatigue Vol. 30 (2008), p.1137.

Google Scholar