Thermal and Electrical Properties of PVDF-HFP-LiCF3SO3-ZrO2 Nanocomposite Solid Polymer Electrolytes

Article Preview

Abstract:

ZrO2 nano sized filler of different amounts is introduced into solid polymer electrolytes of PVDF-HFP-LiCF3SO3-ZrO2. It is observed that the conductivity of the electrolytes varies with ZrO2 content and temperature. The highest room temperature conductivity achieved is in the order of 10-3 S cm-1 which is an increase of seven orders of magnitude compared to the conductivity of PVDF-HFP-LiCF3SO3 (without filler). The temperature dependent conductivity follows the Vogel Tamman Fulcher relationship which can be described by the free volume theory. Transference number measurements using DC polarization method show that the nanocomposite polymer electrolytes are ionic conductors. Differential Scanning Calorimetry results show that the degree of crystallinity is slightly affected by the addition of ZrO2 nanofiller.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 129-131)

Pages:

526-530

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Morita, H. Noborio, N. Yoshimoto, M. Ishikawa: Solid Sstate Ionics Vol 177 (2006) p.715.

Google Scholar

[2] F. Capuano, F. Croce and B. Scrosati: Journal of Electrochemical Society Vol 138 (1991) p. (1918).

Google Scholar

[3] Croce and B. Scrosati: Journal of Power Sources Vol 43-44 (1993) p.9.

Google Scholar

[4] B. Kumar and L.G. Scanlon: Journal of Electroceramics Vol. 5 (2000), p.127.

Google Scholar

[5] W. Wieczorek, Z. Florjanczyk, and J.R. Stevens: Electrochimica Acta Vol. 40 (1995) p.2251.

Google Scholar

[6] N.T.K. Sundaram and A. Subramania: Electrochimica Acta Vol 52 (2007), p.4987.

Google Scholar

[7] D. Saikia, Y.W. Chen-Yang, Y.T. Chen, Y.K. Li and S.L. Lin: Electrochimica Acta Vol 54 (2009), p.1218.

Google Scholar

[8] Zhaohui Li, Guangyao Su, Deshu Gao, Xiayu Wang and Xiaoping Li: Electrochimica Acta Vol 49 (2004), p.4633.

Google Scholar

[9] D. Saikia and A. Kumar: Electrochimica Acta, Vol 49 (2004), p.2581.

Google Scholar

[10] Y. -X. Jiang, Z. -F. Chen, Q. -C. Zhuang, J. -M. Xu, Q. -F, Dong, L. Huang and S. -G. Sun: Journal of Power Sources Vol 160 (2006), p.1320.

Google Scholar

[11] X. Tian, X. Jiang, B. Zhu, and Y. Xu: Journal of Membrane Science Vol 279 (2006), p.479.

Google Scholar

[12] C. Capiglia., Y. Saito, H. Kataoka, E. Kodama, E. Quartarone, and P. Mustarelli: Solid State Ionics Vol 131 (2000) pp.291-299.

Google Scholar

[13] V. Aravindan and P. Vickraman: Materials Chemistry and Physics Vol 115 (2009), p.251.

Google Scholar

[14] C-Y. Chiang, M.J. Reddy and P.P. Chu: Solid State Ionics Vol 175 (2004), p.631.

Google Scholar

[15] V. Aravindan, P. Vickraman and T.P. Kumar: Journal of Membrane Science Vol 305 (2007), p.146.

Google Scholar

[13] A. Bhide and K. Hariharan: European Polymer Journal, Vol 43 (2007), p.4253.

Google Scholar

[17] R. Mishra and K.J. Rao: Solid State Ionics Vol 106 (1998), p.113.

Google Scholar