Fabrication of Biodegradable Polymeric Micro-Analytical Devices Using a Laser Direct Writing Method

Article Preview

Abstract:

Microfluidic channel and micro-cavities were fabricated from polyhydroxyalkanoate biodegradable polymer using a direct 20ns, 248 nm excimer laser writing method. First we give a design of the micro-analytical device; second we discussed the laser ablation of biodegradable ppolymer material. The morphology, dimensional accuracy, and surface conditions of the fabricated micro-devices were studied using atomic force microscopy, scanning electron microscopy, optical microscopy, and X-ray photoelectron spectroscopy. Melting of the biodegradable polymer was observed at a fluency of 50mJ/cm2 while ablation was observed at a fluency of 100mJ/cm2.The different width between bottom and top surface are studied in our research. The particle deposited on the polymer surface is seen from the SEM of 248nm laser ablation of PHA. However, the direct burning of PHA can be seen from the optical photo by 355nm laser. Compare to results of PHA with two different lasers, we can see that the 248nm laser is a suitable choice.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-58

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Manz A., et al: Sensors and Actuators (1990) p.249.

Google Scholar

[2] George M. Whitesides, Emanuele Ostuni, Shuichi Takayama, Xingyu Jiang, and Donald E. Ingber: Annu. Rev. Biomed. Eng. Vol. 3(2001), p.335.

Google Scholar

[3] David J. Beebe, Glennys A. Mensing, and Glenn M. Walker: Annu. Rev. Biomed. Eng. Vol. 4 (2002) , p.261.

Google Scholar

[4] Lu, Y., Chen, S. C.: Adv. Drug Deliv. Rev. Vol56( 2004), p.1621.

Google Scholar

[5] Chantal G. Khan Malek: Anal Bioanal Chem Vol385 (2006), p.1351, p.1362.

Google Scholar

[6] Matthew Roberts, Matthew A., Rossier, Joel S., Bercier, Paul, Girault, Hubert: Anal. Chem. Vol. 69 (1997) p. (2035).

Google Scholar

[7] Mayer, G., Blanchemain, N., Dupas-Bruzek, C., Miri, V., Traisnel, M., et al: Biomaterials Vol. 27 (2006), p.553.

DOI: 10.1016/j.biomaterials.2005.05.096

Google Scholar

[8] Carlos A. Aguilar, Yi Lu, Samuel Mao, et al. : Biomaterials Vol. 26(2005), p.7642.

Google Scholar

[9] Vijay V. kancharla, Shaochen Chen, Daniel S. Zamzow, et al., Transcations of MSE, 407.

Google Scholar

[10] Vijay V Kancharla, Shaochen Chen: Biomedical Microdevices Vol. 4: 2(2002), p.105.

Google Scholar

[11] Tao, Sarah L., Desai, Tejal A.: Adv. Mater. Vol. 17(2005), p.1625.

Google Scholar

[12] Langer, Robert, Acc. Chem. Res. Vol. 33( 2000), p.94.

Google Scholar

[13] Yeong, Wai-Yee, Chua, Chee-Kai, Leong, Kah-Fai, et al.: Trend in Biotechnology, Vol. 22(12)(2004) , p.642.

Google Scholar

[14] Kancharla, Vijay V., Chen, Shaochen: Biomedical Microdevices Vol. 4: 2( 2002), p.105.

Google Scholar

[15] Aguilar, Carlos A., Lu, Yi, Mao, Samuel, Chen, Shaochen: Biomaterials Vol. 26 (2005), p.7642.

Google Scholar

[16] Uhrich, Kathryn E., Cannizzaro, Scott M., Langer, Robert S., Shakesheff, Kevin M.: Chem. Rev. Vol. 99(1999), pp.3181-3198.

DOI: 10.1021/cr940351u

Google Scholar

[17] Grabow, Niels, Schlun, Martin, Sternberg, Katrin et al.: J. Biomechanical Engineering Vol. 127( 2005), pp.25-31.

Google Scholar

[18] Tiaw, K. S., Goh, S. W., Hong, M., Laser surface modification of poly(ε-caprolactone) (PCL) membrane for tissue engineering applications, Biomaterials 26 (2005) 763-769.

DOI: 10.1016/j.biomaterials.2004.03.010

Google Scholar

[19] Yung K. C., Zeng, D. W.: Surface and Coatings Technology Vol 145( 2001), p.186.

Google Scholar

[20] Zeng, D. W., Yung, K. C., Xie, C. S.: Surface and Coatings Technology Vol. 153( 2002), p.210.

Google Scholar