[1]
L. A. Zadeh. Fuzzy sets [J]. Information and Control, 8(1965), p.338.
Google Scholar
[2]
A. Rosenfeld. Fuzzy groups [J]. Journal of Mathematical Analysis and Applications, 35(1971), p.512.
Google Scholar
[3]
B. X. Yao. Fuzzy theory on groups and rings. chapter, 3, Sciences Press(2008).
Google Scholar
[4]
M. AtiMishref. Normal fuzzy subgroups and fuzzy normal series of finite groups [J]. Fuzzy Sets and Systems, 72(1995), p.379.
DOI: 10.1016/0165-0114(94)00288-i
Google Scholar
[5]
X. H . Yuan, C. Zhang, Y.H. Ren. Generaized fuzzy subgroups and many valued implications [J]. Fuzzy Sets and Systems, 138(2003), p.205.
DOI: 10.1016/s0165-0114(02)00443-8
Google Scholar
[6]
Z. H. Liao, X. L . Li, H. Q . Sheng , Y Huang , H Gu. About generalized fuzzy subring[J]. Journal of Jiangnan University(natural science), 3(2004): 622.
Google Scholar
[7]
W.J. Liu. The character of fuzzy ideals and field [J]. Fuzzy Mathematics, 1(1981): 101.
Google Scholar
[8]
S . K . Bhakat, P . Das. On the Defenition of a Fuzzy Subgroup[J]. Fuzzy Sets and Systems, 51(1992)p.235.
DOI: 10.1016/0165-0114(92)90196-b
Google Scholar
[9]
S . K . Bhakat, P . Das. Fuzzy subrings and ideals redefined[J]. Fuzzy Sets and Systems, 81(1996), p.383.
DOI: 10.1016/0165-0114(95)00202-2
Google Scholar
[10]
B. J. Zhao, H. G . Chi. Fuzzy subrings and ideals redifind[J]. Journal of Liaoning normal university (natural science), 24(2001), p.340.
Google Scholar
[11]
Z.Y. Guo, Z. H. Liao. ( )( ), q λµ' , ∈ ∈ ∨ − Fuzzy subgroups[C]. In: Lhasa, Tibet. The sixth Internation-al Conference on Information and ManagementSciences. 2007, p.570.
Google Scholar
[12]
J . Du, Z. H. Liao. ( )( ), q λµ∈ ∈∨ − Generalized fuzzy ideal of BCH-Algebra[C]. In: Hai Kou, Hai Nan. The Fourth International Conference on Fuzzy Systems and Knowledge Discovery, 2007, p.294.
DOI: 10.1109/fskd.2007.1
Google Scholar
[13]
Z. H. Liao, H . Gu( , ( ), q λµ∈ ∈∨ )-fuzzy normal subgroup[J]. Fuzzy Systems and Mathe matics, 20(2006), p.38.
Google Scholar
[14]
Z. H . Liao, M . Chen. ( ( , ), q λµ∈ ∈∨ )-fuzzy subsemigroup and ( , ∈ ∈∨ ( , )q λµ -fuzzycompletely regular subsemigroup [J]. Journal of Jiangnan University(natural science), 8(2009), p.242.
Google Scholar
[15]
Z. H. Liao, Y .X. Chen, J . H . Lu, H . Gu. Generalized fuzzy subsemigroup and Generalized fuzzy completely regular subsemigroup [J]. Fuzzy System and Mathematics, 18(2004), p.81.
Google Scholar