(∈,∈ vq(λ,μ))–Fuzzy (Completely) Regular Subrings

Article Preview

Abstract:

This paper gave the definition of fuzzy (completely) regular subring ,generalized fuzzy (completely) regular subring , fuzzy (completely) regular subring and some properties of them .Baesd on the idea of generalized fuzzy subring,we obtain the equivalent connection between them and discuss some algebraic properties of them .Finally,we give the properties of homomorphic image and homomorphic preimage of fuzzy (completely) regular subring

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 143-144)

Pages:

260-264

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. A. Zadeh. Fuzzy sets [J]. Information and Control, 8(1965), p.338.

Google Scholar

[2] A. Rosenfeld. Fuzzy groups [J]. Journal of Mathematical Analysis and Applications, 35(1971), p.512.

Google Scholar

[3] B. X. Yao. Fuzzy theory on groups and rings. chapter, 3, Sciences Press(2008).

Google Scholar

[4] M. AtiMishref. Normal fuzzy subgroups and fuzzy normal series of finite groups [J]. Fuzzy Sets and Systems, 72(1995), p.379.

DOI: 10.1016/0165-0114(94)00288-i

Google Scholar

[5] X. H . Yuan, C. Zhang, Y.H. Ren. Generaized fuzzy subgroups and many valued implications [J]. Fuzzy Sets and Systems, 138(2003), p.205.

DOI: 10.1016/s0165-0114(02)00443-8

Google Scholar

[6] Z. H. Liao, X. L . Li, H. Q . Sheng , Y Huang , H Gu. About generalized fuzzy subring[J]. Journal of Jiangnan University(natural science), 3(2004): 622.

Google Scholar

[7] W.J. Liu. The character of fuzzy ideals and field [J]. Fuzzy Mathematics, 1(1981): 101.

Google Scholar

[8] S . K . Bhakat, P . Das. On the Defenition of a Fuzzy Subgroup[J]. Fuzzy Sets and Systems, 51(1992)p.235.

DOI: 10.1016/0165-0114(92)90196-b

Google Scholar

[9] S . K . Bhakat, P . Das. Fuzzy subrings and ideals redefined[J]. Fuzzy Sets and Systems, 81(1996), p.383.

DOI: 10.1016/0165-0114(95)00202-2

Google Scholar

[10] B. J. Zhao, H. G . Chi. Fuzzy subrings and ideals redifind[J]. Journal of Liaoning normal university (natural science), 24(2001), p.340.

Google Scholar

[11] Z.Y. Guo, Z. H. Liao. ( )( ), q λµ' , ∈ ∈ ∨ − Fuzzy subgroups[C]. In: Lhasa, Tibet. The sixth Internation-al Conference on Information and ManagementSciences. 2007, p.570.

Google Scholar

[12] J . Du, Z. H. Liao. ( )( ), q λµ∈ ∈∨ − Generalized fuzzy ideal of BCH-Algebra[C]. In: Hai Kou, Hai Nan. The Fourth International Conference on Fuzzy Systems and Knowledge Discovery, 2007, p.294.

DOI: 10.1109/fskd.2007.1

Google Scholar

[13] Z. H. Liao, H . Gu( , ( ), q λµ∈ ∈∨ )-fuzzy normal subgroup[J]. Fuzzy Systems and Mathe matics, 20(2006), p.38.

Google Scholar

[14] Z. H . Liao, M . Chen. ( ( , ), q λµ∈ ∈∨ )-fuzzy subsemigroup and ( , ∈ ∈∨ ( , )q λµ -fuzzycompletely regular subsemigroup [J]. Journal of Jiangnan University(natural science), 8(2009), p.242.

Google Scholar

[15] Z. H. Liao, Y .X. Chen, J . H . Lu, H . Gu. Generalized fuzzy subsemigroup and Generalized fuzzy completely regular subsemigroup [J]. Fuzzy System and Mathematics, 18(2004), p.81.

Google Scholar