Photocatalytic Degradation of Methylene Blue Using Immobilized Nanoparticles of TiO2 Supported by SBA-15 Surface

Article Preview

Abstract:

TiO2-SBA-15 surface (TSS) composites were prepared by the supercritical pretreatment and then sol-gel process with using paraffin used as a clogging agent. The as-grown materials were characterized by using X-ray diffraction, UV-VIS spectroscopy and nitrogen absorption. The photocatalytic activities of TSS were evaluated by quantifying the degradation of methylene blue solution under UV light. Compared with TiO2-SBA-15 (TS) composites prepared only by the sol–gel method, TSS composites remain in mesostructure with high surface areas due to clogging effect of paraffin on SBA-15 cavity. Additionally, the small crystalline size of TiO2 in TSS is attributed to the fact that silica support baffles the agglomeration ofTiO2 nanoparticles. In comparison of TS composites and pure TiO2, higher photocatalytic activity of TSS is obtained and mainly attributed to larger surface areas and greater band-gap energy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

1801-1805

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. F. Li, S. M. Sun, Y.S. Jiang, M. S. Xia and M. B. Sun: J. Hazard. Mater. Vol. 152 (2008), p.1037.

Google Scholar

[2] M. Addamo, V. Augugliaro, A. D. Paola, V. Loddo, R. Molinari and L. Palmisano: J. Phys. Chem. B Vol. 108 (2004), p.3303.

Google Scholar

[3] S.K. Kansal, M. Singh and D. Sud: J. Hazard. Mater. Vol 141 (2007), p.581.

Google Scholar

[4] Y.J. Li, X.D. Li, J.W. Li and J. Yin: Catal. Commun. Vol 6 (2005), p.651.

Google Scholar

[5] B. Tryba, A.W. Morawski and M. Inagaki: Appl. Catal. B: Environ. Vol 46 (2003), p.203.

Google Scholar

[6] X.X. Yu, J.G. Yu, B. Cheng and M. Jaroniec:J. Phys. Chem. C Vol. 113 (40) (2009), p.17527.

Google Scholar

[7] T. Tsumura, N. Kojitani, H. Umemura, M. Toyoda and M. Inagaki: Appl. Surf. Sci. Vol. 196 (2002), p.429.

Google Scholar

[8] H. Ichiura, T. Kitaoka and H. Tanaka: Chemosphere Vol. 50 (2003), p.79.

Google Scholar

[9] R. V. Grieken, J. Aguado, M.J. López-Muñoz and J. Marugán: J. Photochem. Photobiol. A: Chem. Vol. 148 (2002), p.315.

Google Scholar

[10] Z. Ding, X. Hu, G. Q. Lu and P.L. Yue: Langmuir Vol. 16 (2000), p.6216.

Google Scholar

[11] Y. K. Ryu, K. L. Kim and C. H. Lee: Ind. Eng. Chem. Res. Vol. 39(2000), p.2510.

Google Scholar

[12] J. Matos, J. Laine and J. M. Hermann:. J. Catal. Vol. 200 (2001), p.10.

Google Scholar

[13] A. K. Subramani, K. Byrappa, S. Ananda, K. M. Lokanatha Rai, C. Ranganathaiah and M. Yoshimura: Bull. Mater. Sci. Vol. 30 (1) (2007), p.37.

DOI: 10.1007/s12034-007-0007-8

Google Scholar

[14] S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy and V. Murugesan: Sol. Energy. Mater. Sol. Cells Vol. 77 (2003), p.65.

DOI: 10.1016/s0927-0248(02)00255-6

Google Scholar

[15] J. C. Yu, J. Yu and J. Zhao: Appl. Cata. B Environ. Vol. 36 (2002), p.31.

Google Scholar