Deformation Mechanism in the Mg-Gd-Y Alloys Predicted by Deformation Mechanism Maps

Article Preview

Abstract:

Deformation mechanism maps at 0-883 K and shear strain rate of 10-10-10+6 s-1 were built from available rate equations for deformation mechanisms in pure magnesium or magnesium alloys. It can be found that the grain size has little effect on the fields of plasticity and phonon or electron drag, though it has important influence on the fields of power-law creep, diffusion creep, and Harper-Dorn creep in the maps within the present range of temperature, strain rate, and grain size. A larger grain size is helpful to increase the field range of power-law creep but decrease that of diffusion creep when the grain size is smaller than ~204 μm. Harper-Dorn creep dominates the deformation competed to diffusion creep in the grain size range of ~204-255 μm. The maps include only plasticity, phonon or electron drag, and power-law creep when the grain size is higher than ~255 μm, then the grain size has little influence on the maps. Comparison between the reported data for the Mg-Gd-Y alloys and the maps built from available rate equations, it can be conclude that the maps are an effective tool to predict or achieve a comprehensive understanding of the deformation behavior of the Mg-Gd-Y alloys and to classify systematically their discrepancies in the deformation mechanism. However, differences exist in the deformation mechanisms of the alloys observed by the reported data and that predicted by the maps. Therefore, refinement of the maps from the viewpoint of mechanical twining, DRX, and adiabatic shear are necessary.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

225-232

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.A. Anyanwu, S. Kamado, Y. Kojima: Mater. Trans. Vol. 42 (2001), p.1212.

Google Scholar

[2] T. Honma, T. Ohkubo, S. Kamado, K. Hono: Acta Mater. Vol 55 (2007), p.4137.

Google Scholar

[3] T. Kawabata, Y. Fukuda, K. Matsuda, S. Kamado, Y. Kojima, S. Ikeno: Mater. Sci. Forum Vol. 539-543 (2007), p.1769.

DOI: 10.4028/www.scientific.net/msf.539-543.1769

Google Scholar

[4] J.P. Li, Z. Yang, T. Liu, Y.C. Guo, F. Xia, J.M. Yang, M.X. Liang: Scripta Mater. Vol. 56 (2007), p.137.

Google Scholar

[5] K. Yamada, Y. Okubo, M. Shiono, H. Watanabe, S. Kamado, Y. Kojima: Mater. Trans. Vol. 47 (2006), p.1066.

Google Scholar

[6] Z. Yang, Y.C. Guo, J.P. Li, F. He, F. Xia, M.X. Liang: Mater. Sci. Eng. A. Vol. 485 (2008), p.487.

Google Scholar

[7] Y.F. Fan, W. Ji, J. Chen, G.L. Qiao (In Chinese): Mater. Rev. Vol. 22 (2008), p.110.

Google Scholar

[8] Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, J. Robson: Acta Metall. Sinica Vol. 21 (2008), p.313.

Google Scholar

[9] S. Kamado, T. Ashie, H. Yamada, Y. Kojima: Mater. Sci. Forum Vol. 350-351 (2000), p.55.

Google Scholar

[10] T. Peng, Q.D. Wang, J.B. Lin: Mater. Sci. Eng. A. Vol. 516 (2009), p.23.

Google Scholar

[11] Y. Xiao, X.M. Zhang, Y.L. Deng, X.H. Fan: Trans. Nonferrous Met. Soc. China Vol. 17 (2007), p.372.

Google Scholar

[12] X.M. Zhang, J.M. Chen, Y.L. Deng, Y. Xiao, H. Jiang (In Chinese): Chin. J. Nonferrous Met. Vol. 15 (2005), p. (1925).

Google Scholar

[13] X.M. Zhang, L. Li, Y.L. Deng, N. Zhou: J. Alloys Comp. Vol. 481 (2009), p.296.

Google Scholar

[14] X.M. Zhang, Z.K. Peng, J.M. Chen, H. Jiang (In Chinese): J. Cent. South Univ. Vol. 37(2006), p.223.

Google Scholar

[15] C.X. Xiong, X.M. Zhang, J.M. Chen, Y.L. Deng, Z.Z. Deng (In Chinese): Trans. Mater. Heat Treat. Vol. 28 (2007), p.47.

Google Scholar

[16] D.J. Li, Q.D. Wang, J.J. Blandin, M. Suery, J. Dong, X.Q. Zeng: Mater. Sci. Eng. A. Vol. 526 (2009), p.150.

Google Scholar

[17] L. Li, X.M. Zhang, Y.L. Deng, C.P. Tang: J. Alloys Comp. Vol. 485 (2009), p.295.

Google Scholar

[18] J. Yun, M.P. Harmer, Y. T. Chou: J. Mater. Sci. Vol. 30 (1995), p.4906.

Google Scholar

[19] M.F. Ashby: Acta Metall. Vol. 20 (1972), p.887.

Google Scholar

[20] H.J. Frost, M.F. Ashby: Deformation Mechansim Maps, The Plasticity and Creep of Metals and Ceramics (Oxford Publications, United Kingdom1982).

Google Scholar

[21] M. Kawasaki, S. Lee, T.G. Langdon: Scripta Mater. Vol. 61 (2009), p.963.

Google Scholar

[22] W.J. Kim, S.W. Chung, C.S. Chung, D. Kum: Acta Mater. Vol. 49 (2001), p.3337.

Google Scholar

[23] K. Maruyama, K. Sawada, J. Koike, H. Sato, K. Yagi: Mater. Sci. Eng. A. Vol. 224 (1997), p.166.

Google Scholar

[24] S.A. Sajjadi, S. Nategh: Mater. Sci. Eng. A. Vol. 307 (2001), p.158.

Google Scholar

[25] X.Q. Shi, Z.P. Wang, Q.J. Yang, H.L.J. Pang: J. Eng. Mater. Tech. Vol. 125 (2003), p.81.

Google Scholar

[26] H. Tanaka, T. Yamada, E. Sato, I. Jimbo: Scripta Mater. Vol. 54 (2006), p.121.

Google Scholar

[27] J.S. Zhang (In Chinese): High temperature deformation and fracture of materials (Science Press, China 2007).

Google Scholar

[28] T.G. Langdon: Scripta Mater. Vol. 35 (1996), p.733.

Google Scholar

[29] J.N. Wang: Acta Mater. Vol. 44 (1995), p.855.

Google Scholar

[30] T.J. Ginter, P.K. Chaudhury, F.A. Mohamed: Acta Mater. Vol. 49 (2001), p.263.

Google Scholar

[31] J. Harper, J.E. Dom: Acta Metall. Vol. 5 (1957), p.654.

Google Scholar

[32] M.E. Kassner, P. Kumar, W. Blum: Int. J. Plasticity Vol. 23 (2007), p.980.

Google Scholar

[33] G. Effenberg, F. Aldinger, L. Rokhlin: Ternary Alloys (MSI Publications, Germany 1999).

Google Scholar

[34] X.M. Zhang, Y. Xiao: Mater. Sci. Forum Vol. 546-549 (2007), p.261.

Google Scholar

[35] J. Fiala, L. Kloc, J. Cadek: Mater. Sci. Eng. A. Vol. 137 (1991), p.163.

Google Scholar

[36] Y. Takahashi, T. Yamane: J. Mater. Sci. Vol. 16 (1981), p.3171.

Google Scholar

[37] M.A. Meyers, O. Vohringer, V.A. Lubarda: Acta Mater. Vol. 49 (2001), p.4025.

Google Scholar

[38] I.J. Polmear: Mater. Sci. Tech. Vol. 10 (1994), p.1.

Google Scholar

[39] A. Galiyev, R. Kaibyshev, G. Gottstein: Acta Mater. Vol. 49 (2001), p.1199.

Google Scholar

[40] S.E. Ion, F.J. Humphreys, S.H. White: Acta Metall. Vol. 30 (1982), p. (1909).

Google Scholar

[41] T. A. Samman, G. Gottstein: Mater. Sci. Eng. A. Vol. 490 (2008), p.411.

Google Scholar

[42] O. Sitdikov, R. Kaibyshew, T. Sakai: Mater. Sci. Forum Vol. 419-422 (2003), p.521.

Google Scholar