Analysis of Carbide Precipitates in API X80 Medium-Thickness Plate

Article Preview

Abstract:

In order to discuss the abnormal fracture in drop weight tear test (DWTT) of API X80 medium-thickness plate, some unqualified samples in DWTT are characterized by SEM, AES, electrolysis and thermal simulation. SEM results show that there are many spherical precipitates in the fracture surface. EDS and AES results show that the abnormal spherical precipitates are carbides including Fe, Ni, Mo, Ti, etc. These precipitates can be extracted by neutral electrolyte method and their EDS results further demonstrate they are carbides. The formationmechanismof the precipitates is discussed based on thermal simulation experiments. When the cooling rate of medium-thickness plate is not enough high, especially in carbide formation area in Fe-C diagram, abnormal spherical carbides will occur and they are harmful for DWTT.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

301-305

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Wang, W. Yan, L. Zhu, P. Hu, Y.Y. Shan and K. Yang: Mater. Design Vol. 30 (2009) p.3436.

Google Scholar

[2] S.Y. Han, S.Y. Shin, C.H. Seo, H. Lee, J.H. Bae, K. Kim, S. Lee and N.J. Kim: Metall. Mater. Trans. A Vol. 40 (2009) p.1851.

Google Scholar

[3] Y. Kimura, T. Inoue, F.X. Yin, K. Tsuzaki: Science Vol. 320 (2008) p.1057.

Google Scholar

[4] Y. Zhong, F.R. Xiao, J.W. Zhang, Y.Y. Shan, W. Wang and K. Yang: Acta Materialia Vol. 54 (2006) p.435.

Google Scholar

[5] B. Tanguya, T.T. Luua, G. Perrin, A. Pineau and J. Besson: International Journal of Pressure Vessels and Piping Vol. 85 (2008) p.322–335.

Google Scholar

[6] S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, J. Hartmann and S.G. Jansto: Materials Science and Engineering A Vol. 478 (2008) p.26–37.

DOI: 10.1016/j.msea.2007.06.003

Google Scholar

[7] H. Yu, Y. Sun Q.X. Chen, H.T. Jiang and L.H. Zhang: Journal of University of Science and Technology Beijing, Vol. 13(2006), No. 6, p.523.

Google Scholar

[8] B. Hwang, S. Lee, Y.M. Kim, N.J. Kim, J.Y. Yoo and C.S. Woo: Materials Science and Engineering A Vol. 368 (2004) p.18–27.

Google Scholar

[9] S.Y. Shin, B. Hwang, S. Lee, N.J. Kim and S.S. Ahn: Materials Science and Engineering A Vol. 458 (2007) p.281–289.

Google Scholar

[10] G.D. Fearnehough, Fracture Propagation Control in Gas Pipeline: Crack Propagation in Pipelines, England, The Institution of Gas Engineers, (1974).

Google Scholar

[11] M. Kage and H. Nisitani: J. Soc. Mater. Sci. Japan Vol. 29 (1980) p.574.

Google Scholar

[12] C. Temmel, B. Karlsson and N. Ingesten: Metall. Mater. Trans. A Vol. 37a (2006) p.2995.

Google Scholar

[13] API Recommended Practice 5L3, API, (1996).

Google Scholar

[14] ASTM Standard E436-91, ASTM, (1997).

Google Scholar

[15] X.H. Kong. S. Wang and X. Zhai: A method for extracting inclusion from steel by neutral salt electrolysis, China Patent No. 200910084741. 1.

Google Scholar