Experimental Study on the Effect of Normal Stress on the Shear Banding in a Zr-Based Bulk Metallic Glasses

Article Preview

Abstract:

A special fixture, which can control the ratio(λ) of normal stress/shear stress, was used to study the effect of normal stress on the shear banding behaviors in a Zr-based bulk metallic glasses in the present paper. The experimental results demonstrated that the plastic displacement increased with increasing of λ. Observations of shear bands pattern on the sample surfaces indicated that normal stress have significant impact on the inclined angle, numerical density and length of shear bands. In addition, normal stress is the major factor of inducing multiple shear bands with intersecting, branching and slipping. Based on the observations, the mechanism of plasticity enhancement due to the increasing of normal stress was explored.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

424-428

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.L. Greer, Science 267 (1995) (1947).

Google Scholar

[2] W.L. Johnson, MRS Bull. 24 (1999) 42.

Google Scholar

[3] A. Inoue, Acta Mater. 48 (2000) 279.

Google Scholar

[4] M.F. Ashby, A.L. Greer, Scr. Mater. 54 (2006) 321.

Google Scholar

[5] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55 (2007) 4067.

Google Scholar

[6] C.A. Pampillo, Scr. Metall. 6 (1972) 915.

Google Scholar

[7] R.D. Conner, W.L. Johnson, N.E. Paton, W.D. Nix, J. Appl. Phys. 94 (2003) 904.

Google Scholar

[8] F. Spaepen, Acta Metall. 25 (1977) 407.

Google Scholar

[9] A.S. Argon, Acta Metall. 27 (1979) 47.

Google Scholar

[10] P.E. Donovan, W.M. Stobbs, Acta Metall. 29 (1981) 1419.

Google Scholar

[11] R. Huang, Z. Suo, J.H. Prvost, W.D. Nix, J. Mech. Phys. Solids 50 (2002) 1011.

Google Scholar

[12] J. Li, F. Spaepen, T.C. Hufnagel, Phil. Mag. 82 (2002) 2623.

Google Scholar

[13] L.H. Dai, M. Yan, L.F. Liu, Y.L. Bai, Appl. Phys. Lett. 87 (2005) 141916.

Google Scholar

[14] J.J. Lewandowski, A.L. Greer, Nat. Mater. 5 (2006) 16.

Google Scholar

[15] Y. Zhang, A.L. Greer, Appl. Phys. Lett. 89 (2006) 071907.

Google Scholar

[16] Y. Shi, M.L. Falk, Phys. Rev. Lett. 95 (2005) 095502.

Google Scholar

[17] S.P. Joshi, K.T. Ramesh, Phys. Rev. Lett. 101 (2008) 025501.

Google Scholar

[18] L.F. Liu, L.H. Dai, Y.L. Bai et al., J. Non-Cryst. Solids, 351(2005)3259.

Google Scholar

[19] L.H. Dai, Y.L. Bai, Int. J. Impact. Engi. 35(2008)704.

Google Scholar

[20] L.F. Liu, L.H. Dai, Y.L. Bai, B.C. Wei, J. Eckert, Mater. Chem. Phys, 93(2005)174.

Google Scholar

[21] L.F. Liu, L.H. Dai, Y.L. Bai, F.J. Ke, Sci. China G 51 (2008) 1367.

Google Scholar

[22] C.H. Hsueh, H. Bei, C.T. Liu et. al., Intermetallics, 17(2009)802.

Google Scholar