Dynamic Plastic Response of the Mg-Gd-Y Alloy over a Wide Range of Temperatures

Article Preview

Abstract:

In this paper, a new phenomenological and empirically based constitutive model was proposed to change the temperature term in the original Johnson-Cook constitutive model. The new model can be used to describe or predict the stress-strain relation of the metals deformed over a wide range of temperatures even though the current temperatures are lower than the reference temperature. Based on the impact compression data obtained by split Hopkins pressure bar (SHPB) apparatus about one hot-extrudedMg-10Gd-2Y-0.5Zr alloy, the material constants in the new model can be experimentally determined using isothermal and adiabatic stress-strain curves at different strain rates and temperatures. Good agreement is obtained between the predicted and the experimental flowcurves for the hot-extrudedMg-10Gd-2Y-0.5Zr alloy at both quasi-static and dynamic loadings under a wide range of temperatures ever though the current temperatures are lower than the reference temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

623-630

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I.A. Anyanwu, S. Kamado, Y. Kojima: Mater. Trans. Vol. 42 (2001), p.1212.

Google Scholar

[2] K. Yamada, Y. Okubo, M. Shiono, H. Watanabe, S. Kamado, Y. Kojima: Mater. Trans. Vol. 47 (2006), p.1066.

Google Scholar

[3] T. Honma, T. Ohkubo, S. Kamado, K. Hono: Acta Mater. Vol. 55 (2007), p.4137.

Google Scholar

[4] J.P. Li, Z. Yang, T. Liu, Y.C. Guo, F. Xia, J.M. Yang, M.X. Liang: Scripta Mater. Vol. 56 (2007), p.137.

Google Scholar

[5] Z. Yang, Y.C. Guo, J.P. Li, F. He, F. Xia, M.X. Liang: Mater. Sci. Eng. A. Vol. 485 (2008), p.487.

Google Scholar

[6] Y.F. Fan, W. Ji, J. Chen, G.L. Qiao (In Chinese): Mater. Rev. Vol. 22 (2008), p.110.

Google Scholar

[7] E.E. Magd, M. Abouridouane: Int. J. Impact Eng. Vol. 32 (2006), p.741.

Google Scholar

[8] M.A. Meyers, Y.J. Chen, F.D.S. Marouis, D.S. Kim: Metall. Mater. Trans. A. Vol. 26 (1995), p.2493.

Google Scholar

[9] Y. Wang, Y.X. Zhou, Y.M. Xia: Mater. Sci. Eng. A. Vol. 372 (2004), p.186.

Google Scholar

[10] N. Bontcheva, G. Petzov, L. Parashkevova: Comput. Mater. Sci. Vol. 38 (2006), p.83.

Google Scholar

[11] H. Grass, C. Krempaszky, E. Werner: Comput. Mater. Sci. Vol. 36 (2006), p.480.

Google Scholar

[12] X. He, Z. Yu, X. Lai: Comput. Mater. Sci. Vol. 44 (2008), p.760.

Google Scholar

[13] Y.C. Lin, G. Liu: Comput. Mater. Sci. Vol. 48 (2010), p.54.

Google Scholar

[14] S.R. Bodner, Y. Partom: ASME J. Appl. Mech. Vol. 42 (1975), p.385.

Google Scholar

[15] G.R. Johnson, W.H. Cook: in: Proceedings of Seventh International Symposium on Ballistics, The Hague Publishing, Netherlands (1983).

Google Scholar

[16] F.J. Zerilli, R.W. Armstrong: J. Appl. Phys. Vol. 61 (1987), p.1816.

Google Scholar

[17] P.S. Follansbee, U.F. Kocks: Acta Metall. Vol. 36 (1988), p.81.

Google Scholar

[18] D. Samantaray, S. Mandal, A.K. Bhaduri: Comput. Mater. Sci. Vol. 47 (2009), p.568.

Google Scholar

[19] W.K. Rule, S.E. Jones: Int. J. Impact Eng. Vol. 21 (1998), p.609.

Google Scholar

[20] G. Effenberg, F. Aldinger, L. Rokhlin: Ternary Alloys (MSI Publications, Germany 1999).

Google Scholar

[21] E.A. Brandes, G.B. Brook: Smithells Metals Reference Book, 7th ed. (Butterworth-Heinemann Publications, United Kingdom1992).

Google Scholar