Direct Deoxidation of ZrOCl2 Powder to Zirconium With Non-Sintering

Article Preview

Abstract:

Direct electro-deoxidation of zirconium oxychloride powder without sintering in molten CaCl2 and NaCl mixture salt was studied. Molten CaCl2 and NaCl mixture salt as electrolyte, a little graphite crucible filled with zirconium oxychloride powder as novel cathode and a graphite rod as anode, deoxidation experiments were performed at 700 and 3.2V for 8h and 15h, respectively. Results show that using new material of zirconium oxychloride and the method of direct electro-deoxidation without sintering can be applied to the preparation of fine zirconium metal particles, which have a great advantage in cheap cost, short technical process, and energy saving.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

775-779

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.K. Rajagopalan, I.G. Sharma and T.S. Krishnan: J. Alloys Compd., vol. 285(1999), p.212.

Google Scholar

[2] L.F. Mondolfo: Aluminum Alloys: Structure and Properties, (Butterwort Co. Publishers Ltd., London, England 1979).

Google Scholar

[3] K.S. Mohandas and D.J. Fray: Metallurgical and Materials Transactions B, Vol. 40(2009), p.685.

Google Scholar

[4] B.C. Reynes, E.L. Thellman, M.A. Steinberg, and E. Weiner: J. Electrochem. Soc., vol. 102(1955), p.137.

Google Scholar

[5] G.M. Martinez and E.M. Couch: Metall. Trans., vol. 3(1972), p.575.

Google Scholar

[6] P. Pint and S.N. Flengas: Trans. Inst. Min. Metall., vol. 87(1978), p. C29.

Google Scholar

[7] A.M. Abdelkader, A. Daher, R.A. Abdulkareem, and E. El-Kashif: Metall. Mater. Trans. B, vol. 38B (2007), p.35.

Google Scholar

[8] G. Chen, E. Gordo and D. Fray: Metallurgical and Materials Transactions B, vol. 35(2004), p.223.

Google Scholar

[9] X. Liao, H. Xie, Y. Zhai and Y. Zhang: Journal of Materials Sciences and Technology, vol. 25(2009), p.717.

Google Scholar

[10] C. Schwandt, D. J. Fray: Electrochim Acta, vol. 51(2005), p.66.

Google Scholar

[11] C. Schwandt, D. T. Alexander and D. J. Fray: Electrochim Acta, vol. 54(2009), p.3819.

Google Scholar

[12] D. Alexander, C. Schwandt and D. J. Fray: Acta Mater, vol. 54(2006), p.2933.

Google Scholar

[13] G.Z. Chen, E. Gordo and D.J. Fray: Electrochimica Acta, vol. 49(2004), p.2195.

Google Scholar

[14] G.Z. Chen and D.J. Fray: Proc. Molten Salt Chemistry, edtied by R.W. Berg and H. A Hjuler, Elsevier, (2000), vol. 1, p.157.

Google Scholar

[15] D.J. Fray: Can. Metall. Q., vol. 41(2002), p.433.

Google Scholar

[16] G.Z. Chen and D.J. Fray: Mater. Sci. Technol., vol. 20(2004), p.295.

Google Scholar

[17] A.M. Abdelkader, A. Daher and R. A. Abdelkareem: Metallurgical and Materials Transactions B, vol. 38(2007), p.35.

Google Scholar

[18] J. H. Du, Z. P. Xi, Q. Y. Li, Z. X. Li and Y. Tang: Rare metal materials and engineering, vol. 35(2006), p.1045.

Google Scholar