Nano-Scaled Fe3C Precipitates and Precipitation Strengthening in Hot Rolled Low Carbon High Strength Titanium Microalloyed Steel

Article Preview

Abstract:

Hot rolled Ti microalloyed steel with polygonal ferrite and granular bainite microstructure and 640 MPa yield strength has been developed in BOF-CSP process. By chemical phase analysis, XRD, EDS and high resolution TEM, the particle size distribution, morphology, composition, crystal structure of precipitates were identified. Results revealed the steel containing Ti exhibits fine and uniformly distributed Fe3C-type carbides, the amount of M3C particles less than 18 nm in size was 0.2565 mass %. The high strength of steel is attributed to the precipitation strengthening effect of Fe3C, the yield strength increment from precipitation strengthening of Fe3C calculated according to the formula by Olson and Ashby-Orowan attained 234.4 MPa.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

838-843

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. B. Lee, S. G. Hong, C. G. Park, K. H. Kim, S. H. Park: Scripta. Mater., Vol. 43 (2000), p.319.

Google Scholar

[2] J. Sun, J. D. Boyd: Int J. Pressure. Vessels. Piping, Vol. 77(2000), p.369.

Google Scholar

[3] T. U. Kim, J. E. Kim, S. I. Oh and Y. G. Kim: J Korean. Inst. Met., Vol. 24 (1986), p.1279.

Google Scholar

[4] H. J. Wu, J. Fu and Y. C. Liu: Spec. Steel, Vol. 27 (2006), p.19 (In Chinese).

Google Scholar

[5] H. J. Kestenbach: Mater. Sci. Technol., Vol. 13 (1997), p.731.

Google Scholar

[6] M. Charleux, W. J. Poole, M. Militzer, A. Deschamps: Metall. Trans. A, Vol. 32A (2001), p.1635.

Google Scholar

[7] S. Freeman, R. W. K. Honeycombe: Met. Sci., Vol. 11 (1977), p.59.

Google Scholar

[8] R. D. K. Misra, G. C. Weatherly, J. E. Hartmann, A. J. Boucek: Mater. Sci. Technol., Vol. 17 (2001), p.1119.

Google Scholar

[9] X. M. Wang and X. L. He: ISIJ. Int., Vol. 42 (2002), p. S38.

Google Scholar

[10] H. J. Jun, K. B. Kang, C. G. Park: Scr. Mater., Vol. 49 (2003), p.1081.

Google Scholar

[11] K. Yamada, M. Nukura: Tetsu-to-Hagane, Vol. 81 (1995), p.197.

Google Scholar

[12] M. Hua , C. I. Garcia, K. Eloot: ISIJ. Int., Vol. 37 (1997), p.1129.

Google Scholar

[13] C. P. Reip, S. Shanmugamb, R. D. K. Misra: Mater. Sci. Engin. A, Vol. 424 (2006), p.307.

Google Scholar

[14] J. C. Cao, Q. L. Yong, Q. Y. Liu: J. Mater. Sci., Vol. 42 (2007), p.10080.

Google Scholar

[15] B. Beidokhti, A. Dolati, A. H. Koukabi: Mater. Sci. Eng. A, 507 (2009), p.167.

Google Scholar

[16] D. H. Shin, K. T. Park, Y. S. Kim: Scripta. Mater., Vol. 48 (2003), p.469.

Google Scholar

[17] G. Ghosh, C. E. Campbell, G. B. Olson: Metall. Mater. Trans. A, Vol. 30A (1999), p.501.

Google Scholar

[18] B. H. Miao, K. M. Fang, W. M. Bian, G. X. Liu: Acta. Metall. et Mater., Vol. 38 (1990), p.2167.

Google Scholar

[19] K. M. Fang, Z. Lin, K. Fang, L. Huang: Chin. Particu., Vol. 1 (2003), p.88.

Google Scholar

[20] J. Fu, H. Wu, Y. Liu: Sci. China, Ser. E: Technol. Sci. Vo50 (2007), p.166.

Google Scholar

[21] Y. L. Kang, H. Yu, J. Fu, K. L. Wang: Mater. Sci. Engin. A, Vol. 351 (2003), p.265.

Google Scholar

[22] Q. L. Yong: The Secondary Phase in Metal Material., Metal Indus. Publications, China, (2006).

Google Scholar

[23] X. L. Zhang, C. J. Zhuang, K. L. Ji, Y. R. Feng: Spec. Steel, Vol. 27 (2006), p.27 (In Chinese).

Google Scholar

[24] M. Wang, F. L. Li, Z. Q. Sun, W. Y. Yang: Acta. Metall. Sin., Vol. 43 (2007), p.1009.

Google Scholar

[25] J. Fu: J. Chin. Nonferrous. Met., Vol. S1 (2004), p.82 (In Chinese).

Google Scholar

[26] J. Fu, Y. L. Kang, D. L. Liu, D. G. Zhou, Z. B. Wang, G. J. Chen: J. Univ. Sci. Techn. Beijing, Vol. 25 (2003), p.328 (In Chinese).

Google Scholar