Ab Initio Investigations of Electronic Structure and Optical Properties of Ag-F Codoped ZnO

Article Preview

Abstract:

Motivated by the widely discussed Ag doped ZnO and the lack of follow-up reports about the realization of p-n junctions, we calculated the electronic structures and optical properties of pure, Ag-doped and Ag-F codoped ZnO based on the density-functional theory. It was found that Ag doped ZnO shows p-type conduction character. But there are some unstable factors and self-compensations in this structure. We also calcualted the formation energy and ionization energy of the impurity for Ag-F codoped ZnO. It was found that incorporating the reactive donor F into Ag doped ZnO system, not only enhances the Ag acceptor solubility, but also gets a shallower Ag acceptor energy level in the band gap. In addition, we analyze the imaginary part of the dielectric function, reflectivity and absorption coefficient for pure ZnO and Ag-F codoped ZnO. Compared with the pure ZnO, the remarkable feature for Ag-F codoped ZnO is that there is a strong absorption in the visible-light region, which indicates that it could be taken as a potential candidate for a photocatalytic material.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 152-153)

Pages:

1097-1102

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Semiconductors: Data handbook, 3rd ed. edited by O. Madelung (Springer, Berlin, 2004).

Google Scholar

[2] Y. I. Alivov, D. C. Look, B. M. Ataev, M. V. Chukichev, V. V. Mamedov, Y. A. Agafonov and A. N. Pustovit: Solid State Electron. Vol. 48 (2004), p.2343.

DOI: 10.1016/j.sse.2004.05.063

Google Scholar

[3] Su-Huai Wei: Comput. Mater. Sci. Vol. 30 (2004), p.337.

Google Scholar

[4] S. B. Zhang, Su-Huai Wei, and Alex Zunger: Phys. Rev. B Vol. 63 (2001), p.075205.

Google Scholar

[5] C. H. Park and D. J. Chadi: Phys. Rev. Lett. Vol. 75 (1995), p.1134.

Google Scholar

[6] D. J. Chadi and K. J. Chang: Phys. Rev. Lett. Vol. 61 (1988), p.873.

Google Scholar

[7] C. H. Park, S. B. Zhang, and Su-Huai Wei: Phys. Rev. B Vol. 66 (2002), p.073202.

Google Scholar

[8] Yanfa Yan, M. M. Al-Jassim, and Su-Huai Wei: Appl. Phys. Lett. Vol. 89 (2006), p.181912.

Google Scholar

[9] Kanai, Yasuo: Jpn. J. Appl. Phys. I Vol. 30 (1991), p. (2021).

Google Scholar

[10] A. N. Gruzintsev, V. T. Volkov, I. I. Khodos, T. V. Nikiforova and M. N. Koval'chuk: Russ. Microelectronics Vol. 31(2002), p.200.

Google Scholar

[11] Q. Wan, Z. Xiong, J. Dai, J. Rao, F. Jiang: Optical Materials, Vol. 30 (2007), p.817.

Google Scholar

[12] H. S. Kang, B. D. Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H. W. Chang, and S. Y. Lee: Appl. Phys. Lett. Vol. 88 (2006), p.202108.

Google Scholar

[13] Chunying Zuo, Jing Wen, Shenglong Zhu and Cheng Zhong: Optical Materials Vol. 32 (2010), p.595.

Google Scholar

[14] A. Schleife, F. Fuchs, J. Furthmuller and F. Bechstedt: Phys. Rev. B Vol. 73 (2006), p.245212.

Google Scholar

[15] S. B. Zhang and J. E. Northrup: Phys. Rev. Lett. Vol. 67 (1991), p.2339.

Google Scholar

[16] Handbook of chemistry and physics, 73 ed., edited by D. R. Lide (CRC, Boca Raton, FL, 1992).

Google Scholar

[17] J. Sun, H. T. Wang and J. He: Phys. Rev. B Vol. 71 (2005), p.125132.

Google Scholar

[18] X. D. Zhang, M. L. Guo, W. X. Li, and C. L. Liu: J. Appl. Phys Vol. 103 (2008), p.063721.

Google Scholar