Morphological Control Synthesis and Characterization of Hydroxyapatite with Star-Shaped

Article Preview

Abstract:

The aim of the present work was to study the feasibility of wet synthesizing hydroxyapatite (HAP) with star-like and high specific surface area. HAP was synthesized by one-step self-assembly process in ionic liquid media under microwave irradiation, and treated at 300, 600, 900 , respectively. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis revealed that HAP was pure crystal phase. Nitrogen adsorption and desorption isotherms (NADI) with a characteristic hysteresis loop further confirmed the existence of uniform micropores or channels of HAP. The BET surface area, pore volume, and pore size distribution were calculated to be 324m2g-1, 0.39cm3g-1, and 3.28 nm, respectively. Scanning electron microscopy (SEM) results indicated that the HAP was of star-shaped morphology. The formation of HAP could be explained by functional ionic liquid as structure-directing template. Well-ordered mesostructure of HAP with star-like might be therefore used as a potential biomaterial for preparation of bone implant materials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 152-153)

Pages:

1603-1606

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wang, A. L. Yin, H. B. Liu, D. Wu, H. X. Wada, Y. J. Ren, M. Xu, Y. Q. Jiang, T. S. Cheng, X. N., Applied Surface Science 253(2007) 3311-3316.

DOI: 10.1016/j.apsusc.2006.07.025

Google Scholar

[2] Silva, C. C. Graca, M. P. F. Valente, M. A. Sombra, A. S. B., Journal of Materials Science 42(2007) 3851-3855.

Google Scholar

[3] Lin, K. L. Chang, J. Cheng, R. M., Acta Biomaterialia 3(2007)271-276.

Google Scholar

[4] E. Suljovrujica, N. Ignjatovi, D. Uskokovi, Radiation Physics and Chemistry 67 (2003) 375-379.

Google Scholar

[5] Kawasaki T. J. Chromatogr 544(1999)147-184.

Google Scholar

[6] C.C. Nilce, D. Rocha, Environ. Sci. Technol. 36(2002)1630-1635.

Google Scholar

[7] U. Partenfelder, A. Engel, C. Russel, J. Mater. Sci. : Mater. Med. 4(1993)292.

Google Scholar

[8] R. Kumar, K.H. Prakash, P. Cheng, K.A. Khor, Langmuir 20(2004)5196.

Google Scholar

[9] Spanos, N. Misirlis, D. Y. Kanellopoulou, D. G. Koutsoukos, P. G., Journal of Materials Science, 41(2006) 1805-1812.

DOI: 10.1007/s10853-006-2952-9

Google Scholar

[10] Wu, Y. J. Bose, S. Langmuir 21(2005) 3232-3234.

Google Scholar

[11] Yingchao Han, Shipu Li, Xingyu Wang, Li Jia, Jianhua He. Materials Research Bulletin 42(2007)1169-1177.

Google Scholar

[12] Okada, M. Furuzono, T., Journal of Nanoscience and Nanotechnology 7(2007) 848-851.

Google Scholar

[13] Han, Y. C. Li, S. P. Wang, X. Y. Jia, L. He, J. H., Materials Research Bulletin 42(2007) 1169-1177.

Google Scholar

[14] Li, J. G. Hashida, T. Journal of the American Ceramic Society, 89(2006) 3544-3546.

Google Scholar

[15] Ronghai Zhu, Ranbo Yu, Jianxi Yao, Dan Wang, Jiajun Ke, Journal of Alloys and Compounds, 457(2008) 555-559.

Google Scholar

[16] Chen, X. M. Li, S. P. Liang, F. Bioceramics 292-1(2000)239-242.

Google Scholar

[17] Mamoru Aizawa, Alexandra E. Porter, Serena M. Best, William Bonfield, Biomaterials 26 (2005) 3427-3433.

Google Scholar

[18] Ignacio Lopez, GuadalupeSilvero, Maria Jose Arevalo, Reyes Babiano, Juan Carlos Palacios and Jose Luis Bravo, Tetrahedron 63 (2007) 2901-2906.

Google Scholar

[19] Min Xia, Yue-dong Lu, Journal of Molecular Catalysis A: Chemical 265(2007)205-208.

Google Scholar

[20] Kappe, C.O. Angew. Chem., Int. Ed. 43(2004)6250.

Google Scholar

[21] PauloA.Z. Suarez, JeaneE.L. Dullius, SandraEinloft, RobertoF. De Souza, JairtonDupont, Polyhedron 15 (1996) 1217.

Google Scholar

[22] M.F. Maitz, M.T. Pham, W. Matz, H. Reuther, G. Steiner, E. Richter. Biomolecular Engineering 19 (2002) 269-272.

DOI: 10.1016/s1389-0344(02)00039-4

Google Scholar