Phase Evolution and Formation Mechanism in Acicular Mullite Prepared from Kaolinite via Wet Chemistry Method

Article Preview

Abstract:

Mullite was synthesized by firing precursors prepared from kaolinite via a wet chemistry method at various temperatures. The acicular mullite grains were formed in samples with addition of AlF3 by this process. The phase evolution and morphology of the fired samples were investigated. For the samples without AlF3, the mullitization began to occur at 1300 and almost completed at 1550 , the grains formed were normal-shaped. For the samples with AlF3, acicular mullite was formed, and mullitization began to occur at 1100 and completed at 1250 . The growth of the acicular mullite was associated with a liquid phase. The formed acicular mullite was alumina-rich and had a composition of about 73.4 wt% Al2O3 and 26.6 wt% SiO2 (Al2O3/SiO2=1.65, molar ratio).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 152-153)

Pages:

643-647

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Schneider, J. Schreuer and B. Hildmann: J. Eur. Ceram. Soc. Vol. 28 (2008), p.329.

Google Scholar

[2] K.S. Mazdiyasni and L.M. Brown: J. Am. Ceram. Soc. Vol. 55 (1972), p.548.

Google Scholar

[3] S. Kanzaki, H. Tabata, T. Kumazawa and S. Ohta: J. Am. Ceram. Soc. Vol. 68 (1985), p. C6.

Google Scholar

[4] T.I. Mah and K.S. Mazdiyasni: J. Am. Ceram. Soc. Vol. 66 (1983), p.699.

Google Scholar

[5] J. Parmentier and S. Vilminot, J: Alloys Compd. Vol. 264 (1998), p.136.

Google Scholar

[6] H. Tan, Y. Ding and J. Yang: J. Alloys Compd. Vol. 492 (2010), p.369.

Google Scholar

[7] M.H. Zhou, J.M.F. Ferreira, A.T. Fonseca and J.L. Baptista: J. Am. Ceram. Soc. Vol. 79 (1996), p.1756.

Google Scholar

[8] Y.X. Huang, A.M.R. Senos and J.L. Baptista: Ceram. Int. Vol. 24 (1998), p.223.

Google Scholar

[9] T.R.N. Kutty and M. Nayak: Mater. Chem. Phys. Vol. 65 (2000), p.158.

Google Scholar

[10] D. Janackovic, V. Jokanovic, L.K. Gvozdenovic and D. Uskokovic: Nanostruct. Mater. Vol. 10 (1998), p.341.

Google Scholar

[11] C.Y. Chen, G.S. Lan and W.H. Tuan: J. Eur. Ceram. Soc. Vol. 20 (2000), p.2519.

Google Scholar

[12] M.A. Sainz, F.J. Serrano, J.M. Amigo, J. Bastida and A. Caballero: J. Eur. Ceram. Soc. Vol. 20 (2000), p.403.

Google Scholar

[13] J.H. Bai: Ceram. Int. Vol. 36 (2009), p.673.

Google Scholar

[14] M. Schmucker, W. Albers and H. Schneider: J. Eur. Ceram. Soc. Vol. 14 (1994), p.511.

Google Scholar

[15] A.M.A. Rehim: Thermochim. Acta. Vol. 13 (1975), p.231.

Google Scholar

[16] J.R. Moyer and P.R. Rudolf: J. Am. Ceram. Soc. Vol. 77 (1994), p.1087.

Google Scholar

[17] J.R. Moyer and N.N. Hughes: J. Am. Ceram. Soc. Vol. 77 (1994), p.1083.

Google Scholar

[18] P. Peng and C. Sorrell: Mater. Lett. Vol. 58 (2004), p.1288.

Google Scholar

[19] K. Okada and N. Otsuka: J. Mater. Sci. Lett. Vol. 8 (1989), p.1052.

Google Scholar

[20] X. Miao: Mater. Lett. Vol. 38 (1999), p.167.

Google Scholar

[21] A.J. Pyzik, C.S. Todd and C. Han: J. Eur. Ceram. Soc. Vol. 28 (2008), p.383.

Google Scholar

[22] I.A. Aksay and J.A. Pask: J. Am. Ceram. Soc. Vol. 58 (1975), p.507.

Google Scholar

[23] I.A. Aksay, D.M. Dabbs and M. Sarikaya: J. Am. Ceram. Soc. Vol. 74 (1991), p.2343.

Google Scholar

[24] K. Okada and N. Otuska: J. Am. Cerm. Soc. Vol. 74 (1991), p.2414.

Google Scholar