Effect of Mg on the Microstructure and Electrochemical Corrosion Behavior of Arced Sprayed Zn-Al Coating

Abstract:

Article Preview

Cored wires and high velocity arc spraying technique (HVAS) were used to produce high Mg content Zn-Al-Mg alloy coatings on low carbon steel substrates. The microstructures, mechanical properties and electrochemical corrosion behaviors of the Zn-Al-Mg coatings were investigated comparing with Zn and Zn-Al alloy coatings. And the electrochemical corrosion mechanisms of the coatings were discussed. The coatings show a typical aspect of layered thermal sprayed material structure. Chemical analysis of the coating indicated the composition to be Zn-14.9Al-5.9Mg-3.0O (wt.%). The main phases in the coatings are Zn, Mg2Zn11, Al12Mg17 and MgAl2O4, together with a little Al2O3 and ZnO. The corrosion potential of Zn-Al and Zn-Al-Mg coatings decreased a little and then increased towards the noble potential. With addition of Mg, the corrosion products accumulated to form stable passive film can block off the pores in the Zn-Al-Mg coating, and thus may prevent attack on the underlying steel substrate. The Zn-Al-Mg coatings show higher electrochemical corrosion resistance in salt solution than Zn-Al coatings.

Info:

Periodical:

Advanced Materials Research (Volumes 154-155)

Edited by:

Zhengyi Jiang, Xianghua Liu and Jinglong Bu

Pages:

1389-1392

DOI:

10.4028/www.scientific.net/AMR.154-155.1389

Citation:

Z. X. Zhu et al., "Effect of Mg on the Microstructure and Electrochemical Corrosion Behavior of Arced Sprayed Zn-Al Coating", Advanced Materials Research, Vols. 154-155, pp. 1389-1392, 2011

Online since:

October 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.